Math, asked by Sciento, 4 days ago

In an A.P., if Sn-3 = 5n2 - 28n + 39, then its 9th term is​

Answers

Answered by mathdude500
8

Appreciate Question :-

In an AP, the 9th term is ______, if

\rm \: S_{(n - 3)} = 5 {n}^{2} - 28n + 39 \\

\large\underline{\sf{Solution-}}

Given that,

In an AP series,

\rm \: S_{(n - 3)} = 5 {n}^{2} - 28n + 39 \\

Replace n by k + 3, we get

\rm \: S_{(k + 3 - 3)} = 5 {(k + 3)}^{2} - 28(k + 3) + 39 \\

\rm \: S_{k} = 5( {k}^{2} + 9 + 6k) - 28k - 84 + 39 \\

\rm \: S_{k} = 5{k}^{2} + 45 + 30k - 28k - 45 \\

\rm \: S_{k} = 5{k}^{2}  + 2k \\

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the progression.

n is the no. of terms.

d is the common difference.

So, using this

\rm \: \dfrac{k}{2} \bigg(2a + (k - 1)d \bigg)  =  {5k}^{2}  + 2k \\

\rm \: \dfrac{k}{2} \bigg(2a + (k - 1)d \bigg)  =  k(5k + 2) \\

\rm \: \dfrac{1}{2} \bigg(2a + (k - 1)d \bigg)  =  5k + 2 \\

\rm \: 2a + (k - 1)d  =  2(5k + 2) \\

\rm \: 2a + kd - d  =  10k + 4 \\

\rm \: (2a  - d)+ kd   =  10k + 4 \\

So, on comparing we get

\rm \: d = 10 \\

and

\rm \: 2a - d = 4 \\

\rm \: 2a - 10 = 4 \\

\rm \: 2a  =10 +  4 \\

\rm \: 2a  =14 \\

\rm\implies \:a = 7 \\

Now, we know that

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm \: a_{9} \\

\rm \: =  \: a + (9 - 1)d \\

\rm \: =  \: a + 8d \\

\rm \: =  \: 7 + 8 \times 4 \\

\rm \: =  \: 7 + 32 \\

\rm \: =  \: 39 \\

\rm\implies \:\boxed{\sf{  \:\rm \: a_{9} = 39 \:  \: }} \\

Similar questions