Math, asked by dhaval6777, 1 year ago

In an A.P if sum of its first n terms is 3n square +5n and it's Kth term is 164, find the value of k.

Answers

Answered by amitnrw
21
sum of first n terms

 = ( \frac{n}{2} )(a + a + (n - 1)d) \\ = ( \frac{n}{2} )(2a + (n - 1)d) \\ = an \: + \frac{ {n}^{2}d }{2} - \frac{nd}{2}

where a = 1st term

d = common difference

sum=

3 {n}^{2} + 5n

an \: + \frac{ {n}^{2}d }{2} - \frac{nd}{2} =3 {n}^{2} + 5n

equating
\frac{ {n}^{2}d }{2} =3 {n}^{2}
d = 6
using this value and equating rest
n(a- d/2) = 5n
a - 6/2 = 5
a = 5+3
a =8

kth term = 164

a + (k-1) d = 164
8 + (k-1)6 = 164
6(k-1) = 156
k-1 = 26
k = 27

Cubingwitsk: Awesome! And Perfect Explanation! ^_^
Answered by Cubingwitsk
27

Answer:

  • Value of K = 27.

Step-by-step explanation:

  • A.P's sum of 'n' terms = \bold{3n^{2}+5n} {Given} -(i)

But we know that, Sum of 'n' terms of an A.P is \bold{S_{n}\:=\:\frac{n}{2}(2a+(n-1)d)} -(ii)

\bold{\underbrace{3n^{2}+5n}_{From\:eq^{n}\:(i)}\:=\:\underbrace{\frac{n}{2}(2a+(n-1)d)}_{From\:eq^{n}\:(ii)}}

According to General Formula given,i.e.  A.P's sum of 'n' terms = \bold{3n^{2}+5n}

Putting the value of n as 1 , We get :

\bold{3n^{2}+5n} {n=1}

\bold{\Longrightarrow\:3\times1^{2}+5\times1}

\bold{\Longrightarrow\:3\times1+5\times1}

\bold{Longrightarrow\:3+5}

  • \bold{\hookrightarrow\:8\:\:\:(a_{1}\:=8)}

Putting the value of n as 2 , We get :

\bold{3n^{2}+5n} {n=2}

\bold{\Longrightarrow\:3\times2^{2}+5\times2}

\bold{\Longrightarrow\:3\times4+5\times2}

\bold{\Longrightarrow\:12+10}

\bold{\Longrightarrow\:22}

Here, ∵ This is the general formula of Summation of A.P is used, Hence

\bold{S_{2}\:=\:22}

\bold{\implies\:a_{1}+a_{2}\:=\:22}

\bold{\implies\:8+a_{2}\:=\:22}

\bold{\implies\:a_{2}\:=\:22-8}

  • \bold{\hookrightarrow\:(a_{2}\:=14)}

Putting the value of n as 3 , We get :

\bold{3n^{2}+5n} {n=3}

\bold{\Longrightarrow\:3\times3^{2}+5\times3}

\bold{\Longrightarrow\:3\times9+5\times3}

\bold{\Longrightarrow\:27+15}

\bold{\Longrightarrow\:42}

Here, ∵ This is the general formula of Summation of A.P is used, Hence

\bold{S_{3}\:=\:42}

\bold{\implies\:a_{1}+a_{2}+a_{3}\:=\:42}

\bold{\implies\:22+a_{3}\:=\:42}

\bold{\implies\:a_{3}\:=\:42-22}

  • \bold{\hookrightarrow\:(a_{3}\:=20)}

∴A.P so far formed = 8, 14, 20... with Common Difference = 6

______________________________

Coming to second part of question,

Q. Kth term is 164, find the value of k.

We know the formula,

\bold{\implies\:a_{n}\:=\:a+(n-1)d}

\bold{\implies\:K_{th}\:=\:a+(k-1)d} {Changing 'n' into 'K'}

\bold{\implies\:K_{th}\:=\:a+(k-1)d}

∵Kth term is 164 (Given)

\bold{\implies\:164\:=\:a+(k-1)d}

Values of 'a' and 'd' are 8 and 6 respectively. (Found out above)

\bold{\implies\:164\:=\:8+(k-1)6}

\bold{\implies\:164-8\:=\:(k-1)6} {Transposing 8 to LHS}

\bold{\implies\:156\:=\:(k-1)6}

\bold{\implies\:\frac{156}{6}\:=\:(k-1)} {Transposing 6 to LHS}

\bold{\implies\:26\:=\:(k-1)}

\bold{\implies\:26+1\:=\:(k)} {Transposing 1 to LHS}

\bold{\implies\:27\:=\:k}

\bold{\boxed{Value\:of\:K\:=\:27}}

Thanks!


ReenaRobin: fantastic way of explanation (^_^)
Cubingwitsk: Thanks ^_^
Similar questions