Math, asked by vismaya2005d, 6 months ago

In an A.P., if the 12thterm is -13 and the sum of its first four terms is 24, find the sum of its ten terms

Answers

Answered by jayesh7205
0

Answer:

t12=a+11d=-13(since tn=a+(n-1)d

s4(sum of four terms) is=24

s10(sum of ten terms)we need to find

now let a+11d=-13.....(1)

given s4=24(Sn=n/2(2a+(n-1)d)

4/2(2a+(4-1)d)=24

2(2a+3d)=24

2a+3d=12....(2)

now solve(1) and (2)

after solving a(first term=9)

common difference(d)=-2

now s10(sum of ten terms)=10/2(2(9)+(10-1)(-2)

s10=0

so sum of ten terms is zero

Step-by-step explanation:

Answered by brainlyofficial11
113

Aɴsʀ

given :-

  • 12th term = -13
  • sum of first 4 terms = 24

to find :-

  • sum of first ten terms

__________________________

solution :-

  • a = first term
  • n = term number
  • an = nth term
  • d = common difference
  • l = last term
  • Sn = sum of first n terms

and we know that,

 \boxed{ \pink{ \bold{a_{n} = a + (n - 1)d}}}   \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \boxed{ \pink{ \bold{S_{n} =  \frac{n}{2} \{2a   + (n - 1)d \}}}} \\  \\  \boxed{ \pink{ \bold{S_{n}  =  \frac{n}{2} (a + l)}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

__________________________

here,

  • 12th term = -13
  • n = 12

 \bold{ \implies a_{12} = a + (12 - 1)d} \:  \:  \: \:  \:  \:  \:  \:    \:  \:  \:  \\  \\ \bold{  \implies -13 = a + 11d }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{ \implies a + 11d  + 13 = 0}........(i)

and

  • sum of first four term is 24
  • n = 4

 \bold{ \implies S _{4} =   \cancel{\frac{4}{2}}  \{ 2a + (4 - 1)d\}}  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{ \implies  24 = 2(2a + 3d)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:    \\  \\   \bold{ \implies2a + 3d =  \cancel{\frac{24}{2} }} \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \implies 2a + 3d = 12} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \\  \\   \bold{\implies2a + 3d - 12 = 0} .........(ii)

__________________________

now, we have two equations.

  • a + 11d + 13 = 0 .......(i)
  • 2a + 3d - 12 = 0 .......(ii)

from equation (i)

a = -11d - 13 .....(iii)

now substitute this value of a in (ii)

 \bold{ \implies 2( - 11d - 13)   + 3d - 12 = 0} \\  \\  \bold{ \implies  - 22d - 26 + 3d - 12 = 0} \:  \:  \:  \:   \:  \:  \\  \\   \bold{\implies  - 19d - 38 = 0}\:  \:  \:  \: \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{\implies  - 19d = 38}\:  \:   \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \\  \\   \bold{\implies d =  \cancel{ \frac{38}{ - 19}}}  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \:  \:  \:  \:   \:  \\  \\  \implies \boxed{\bold{  d =  - 2 }}\:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:

now, substitute the value of d in eq.(iii)

 \bold{ \implies a =  - 11( - 2) - 13 } \\  \\  \bold{ \implies a =  22 - 13} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \boxed{  \bold{ a = 9}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

__________________________

now, we get

  • a = 9
  • d = -2

we have to find sum of first ten terms

  • n = 10

 \bold{ \implies S _{10} =   \cancel{\frac{10}{2}} \{2 \times 9 + (10 - 1) - 2 \} } \\ \\  \bold{ \implies S_{10} = 5 \{18  +   (9 \times  - 2)\} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \implies S _{10} = 5(18  - 18)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \implies S_{10} = 5 \times 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\   \implies\boxed{  \red{\bold{ S_{10} = 0 }}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, sum of first ten terms of this AP is 0

Similar questions