Math, asked by SaaraSheikh, 10 months ago

In an A.P. of 50 terms, the sum of the first 10
terms is 210 and the sum of its last 15 terms is
2565. Find the A.P. ​

Answers

Answered by Anonymous
7

consider a and d as the first term and the common difference of an A.P. respectively.

n th term of an A.P., an = a + ( n – 1)d

Sum of n terms of an A.P., S n = n/ 2 [2a + (n – 1)d]

Given that the sum of the first 10 terms is 210.

⇒ 10 / 2 [2a + 9d ] = 210

⇒ 5[ 2a + 9 d ] = 210

⇒2a + 9d = 42 ----------- (1)

15 th term from the last = ( 50 – 15 + 1 ) th = 36 th term from the beginning

⇒ a36 = a + 35d

Sum of the last 15 terms = 15/2 [2a36 + ( 15 – 1)d ] = 2565

⇒ 15 / 2 [ 2(a + 35d) + 14d ] = 2565

⇒ 15 [ a + 35d + 7d ] = 2565

⇒a + 42d = 171 ----------(2)

From (1) and (2), we have d = 4 and a = 3.

Therefore, the terms in A.P. are 3, 7, 11, 15 . . . and 199.

Similar questions