Math, asked by charu5750, 5 months ago

in an A.P S4=42 and S3=24. then find the fourth term fo an A.P

Answers

Answered by Ssrinivas
0

Step-by-step explanation:

given

 s_{4} = 42 \: and \: s _{3}   = 24

we know that

s_{n} =  \frac{n}{2} (2a + (n - 1)d)

so

 s_{4}  =  \frac{4}{2} (2a + (4 - 1)d \\ 42 = 2(2a + 3d) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \frac{42}{2}  = (2a + 3d) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   {21}  = 2a +3 d  -  -   -  ( \: i \: )

also,

 s_{3}  =  \frac{3}{2} (2a + (3- 1)d)  \\ 24 =  \frac{3}{2} (2a + 2d ) \\  \\ 24 =  \frac{3}{2} 2(a + d )  \\  \frac{24}{3}  = a + d \\ 8 = a + d \:  \:  \\ a = 8 - d -  -  - ( \: ii \: )

take ( i )

21=2a + 3d

21=2(8-d)+3d. [from ii]

21= 16+3d-2d

d=5

take eq ( ii )

a=8-5

a=3

a_{4} = a + (n - 1) d \\  = 3 +( 4 - 1)5 \\  = 3 + 3 \times 5 \\  = 3 + 15 \\  = 18

therefore fourth term of A.P IS 18

Similar questions