Math, asked by umangrai9680, 1 year ago

In an A.P S7 = 49,S17= 289 find Sn

Answers

Answered by rs0259972p6e336
67
please give me your feedback.
Attachments:
Answered by wifilethbridge
20

Answer:

S_n = \frac{n}{2}(2+(n-1)2)

Step-by-step explanation:

Formula of first n terms in AP = S_n = \frac{n}{2}(2a+(n-1)d)

Substitute n = 7

So, S_7 = \frac{7}{2}(2a+6d)

49 = \frac{7}{2}(2a+6d)

49 \times \frac{2}{7} = 2a+6d

14= 2a+6d

Substitute n = 17

S_{17} = \frac{17}{2}(2a+16d)

289 = \frac{17}{2}(2a+16d)

289 \times \frac{2}{17} = 2a+16d

34= 2a+16d

34= 2a+10d+6d

Using A

34= 14+10d

20 = 10d

d=2

Substitute the value of d in A

14= 2a+12

2= 2a

a=1

So,  S_n = \frac{n}{2}(2(1)+(n-1)2)

S_n = \frac{n}{2}(2+(n-1)2)

Similar questions