Math, asked by subashapu2573, 1 month ago

In an A.P, Sn = 2n2 + 6n, Find the First term and common difference.

Answers

Answered by bagkakali
0

Answer:

Sn=2n^2+6n

S1=2.1^2+6.1=2.1+6=2+6=8

S1 is the 1st term=8

S2=2.2^2+6.2=2.4+12=8+12=20

S2 is the sum of 1st and 2nd term

1st term=8

so 2nd term =20-8=12

so common difference=12-8=4

so 1st term is 8 and common difference is 4

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that, Sum of first n terms of an AP is

\red{\rm :\longmapsto\:S_n =  {2n}^{2} + 6n}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So,

\rm :\longmapsto\: {2n}^{2} + 6n \:  =  \:  \dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)

\rm :\longmapsto\: n({2n} + 6)\:  =  \:  \dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)

\rm :\longmapsto\: {2n} + 6\:  =  \:  \dfrac{1}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)

\rm :\longmapsto\: {4n} + 12\:  =  \:  2 \:a\:+\:(n\:-\:1)\:d

\rm :\longmapsto\: {4n} + 12\:  =  \:  2 \:a\:+\:nd\:-\:d

\rm :\longmapsto\: {4n} + 12\:  =  \:  (2 \:a\: -  \: d \: ) \: +\:nd

So, on comparing we get

\rm :\longmapsto\:d = 4

and

\rm :\longmapsto\:2a - d = 12

\rm :\longmapsto\:2a - 4 = 12

\rm :\longmapsto\:2a  = 12 + 4

\rm :\longmapsto\:2a  = 16

\rm :\longmapsto\:a  = 8

Hence,

First term of an AP = 8

and

Common Difference of an AP = 4

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.
Similar questions