Math, asked by Mahimkachari, 1 year ago

in an A.P the 11th term is 38 and the 16th term is 73.the 31st term of the A.P is

Answers

Answered by neerushukla256
2

Answer:

Step-by-step explanation:

11th Term  { a + 10d } = 38............(1)

16th Term {a + 15d }=73................(2)

Now subtracting  equation (1) and (2) by elimination method:-            

             a+10d -(a+15d)=38-73

             a+10d-a-15d= -35

              -5d= -35

                  d= -35/-5

                   d=7

 From Equation (1)

       a+10d=38

       Putting d=7

       a+10*7=38

        a=38-70

        a= -32

Now,

31st Term (a+30d)= -32+30*7

            =>  -32+210

            =>  278

Hence 278 is the 31st term of this AP      

Answered by Anonymous
2

\boxed{\tt \dagger Given :- \dagger}

11th term of AP is 38 and,

16th term of AP is 73.

\boxed{ \tt \dagger To find :- \dagger}

The 31st term of AP = ?

\boxed{ \tt \dagger Solution :- \dagger}

Let first term of AP be a

Let first term of AP be aand common difference be d

Let first term of AP be aand common difference be dNow,

\tt \red{a_{11}=38a}

\tt\longrightarrow \green{a+10d=38\:.............(i)}

And,

 \blue{\tt\:a_{16}=73a}

 \tt\longrightarrow\pink{a+15d=73\:.............(ii)}

From eq (i) and eq (ii),

a + 10d = 38 ‿︵‿︵│

⠀ ⠀ ⠀ ⠀⠀⠀ ⠀ ⠀ ⠀⠀⠀ ⠀ |Subtracting

\boxed{+}a \boxed{+} 15d = \boxed{+}73 ‿︵‿︵│

-⠀ -⠀ ⠀ -

━━━━━━━━━━━━━━

-5d = -35

 \purple{ \tt⤇ d = \dfrac{-35}{-5} }

 \orange{ \tt⤇ d = 7}

Now,

Substitute the value of d in equation (i),

 \tt a + 10d = 38 \\ \tt⤇ a + 10 × 7 = 38 \\ \tt⤇ a + 70 = 38 \\ \tt⤇ a = 38 - 70 \\ \tt⤇ a = -32

Then,

 \gray{\tt\:a_{31}=a+30da }

\tt\longrightarrow\:a_{31}=-32+30\times{7} \\ \tt\longrightarrow\:a_{31}=-32+210 \\ \tt\longrightarrow\:a_{31}=178

Hence, the 31st term of an AP was \boxed{\sf\pink{178.}}

Similar questions