Math, asked by mahormahesh75, 5 hours ago

in an A.P. , the first term is 2 and the sum of the first five terms is one fourth of the next five terms, show that 20th term is - 112


Class 11​

Answers

Answered by itzMeGunjan
3

Given :-

  • First term (a) = 2
  • Sum of next five term is \frac{1}{4}

Prove :-

  • T_{20}= - 112

Solution :-

• Sum of 1st five term can be Represent as S_{5}

\frac{1}{4} ( Sum of Next five term) can be written as \:  \:  \:  \:  \:  \:\frac{1}{4} (S_{10} - S_{5})

 \:  \:  \:  \:  \:  \:  \:  \rm{S_5 =  \frac{1}{4} (S_{10} - S_5)} \\  \:  \:  \:  \:  \rm{4 \: S_5} = (S_{10} - S_5) \\  \:  \:  \:  \:  \rm{4 \: S_5 +S_5 = S_{10} } \\  \:  \:  \:  \rm{5 \red{ S_5}} =  \red{S_{10}}

Finding Sum where n = 5 , for second one

N= 10 and a = 2 [ Given] for finding Common difference!!

  \:  \:  \:  \:  \:  \:  \: \rm{5 \red{ S_5}} =  \red{S_{10}} \\   \small{\rm{5 [ \: \frac{n}{2}(2a + (n - 1)d)]} =  [ \: \frac{N}{2} (2a + (N - 1)d \: ]} \\  \small{\rm{5 [ \: \frac{5}{2}(2(2) + (5- 1)d)]} =  [ \: \frac{10}{2} ( \: 2(2) + (10 - 1)d \: ]} \\  \implies \bf{ \frac{25}{2} (4 + 4d)} = 5(4 + 9d) \\  \rightarrow \frac{25}{ \cancel2} \times  \cancel2  \bf{(2 + 2d) = 20 + 45d} \\   \rightarrow\sf{50 + 50d = 20 + 45d} \\  \rightarrow \sf{50 \: d - 45 \: d} = 20 - 50 \\  \rightarrow \sf{5 \: d =  - 30} \\  \rightarrow \sf d =  \cancel{\frac { - 30}{5}} \\  \hookrightarrow  \boxed{\bf{ \green{d =  - 6}}}

 \:  \:  \:  \:  \:  \hookrightarrow \bf{T_{20} = a + 19d} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{T_{20 } = 2 + 19( - 6)} \\  \:  \:  \:  \:  \:  \:  \:  \sf{T_{20} = 2 - 114} \\  \implies{} \boxed{ \rm{T_{20} =  - 112}}

Hence Proved !!


Anonymous: Great!
Similar questions