In an A.P., the sixth term is 27 and the eleventh term is 52. Find the 20th term.
Answers
Answered by
7
Solution :
In an A.P., the 6th term is 27 and the 11th term is 52.
The 20th term.
We know that;
- a is the first term.
- d is the common difference.
- n is term of A.P.
So;
&
Subtracting equation (1) from (2),we get;
Putting the value of d in equation (1),we get;
The 20th term of an Arithmetic progression :
Thus;
The 20th term is 97 .
Answered by
6
Given :-
In an A.P., the sixth term is 27 and the eleventh term is 52.
• a₆ = 27
• a₁₁ = 52
To find :-
The 20th term (a₂₀).
Solution :-
Subtracting eq.(i) from eq.(ii) :-
So, we get d = 25/5 = 5
Putting the value of d = 5 in eq.(i) :
a + 5d = 27
⇒a + 5(5) = 27
⇒a = 27 - 25
⇒a = 2
We know,
a₂₀ = a + 19 d
⇒a₂₀ = 2 + (19*5)
⇒a₂₀ = 2 + 95
⇒a₂₀ = 97
∴ So, the 20th term of the A.P. is 97.
Similar questions