In an A.P the sum of first n terms is 3n^2+5n and its kth term is 164. Find the value of k
Answers
Answer:
k = 27
Step-by-step explanation:
Given, Sum of first n terms is 3n² + 5n.
Sn = 3n² + 5n
Substitute n = 1, we get
T₁ = S₁ = 3 + 5 = 8
Substitute n = 2, we get
S₂ = T₁ + T₂ = 12 + 10 = 22
Then, T₂ = S₂ - T₁
= S₂ - S₁
= 22 - 8
= 14
Common difference d = T₂ - T₁
= 14 - 8
= 6
Here, First term a = 8, Common difference d = 6.
Now,
Given kth term is 164.
⇒ a + (k - 1) * d = 164
⇒ 8 + (k - 1) * 6 = 164
⇒ 8 + 6k - 6 = 164
⇒ 6k + 2 = 164
⇒ 6k = 162
⇒ k = 27.
Therefore, the value of k = 27.
Hope it helps!
Given: Sn = 3n² + 5n
S₁ = 3(1)² + 5(1)
= 3 + 5
T₁ = 8
S₂ = 3(2)² + 5(2)
= 12 + 10
= 22
So, T₁ + T₂ = 22
8 + T₂ = 22
T₂ = 22 - 8
T₂ = 14
Now,
a = 8 and d = 14 - 8 = 6
As ak = 164
or a + (k-1)d = 164
8 + (k-1)6 = 164
6k - 6 = 164 - 8
6k = 164 + 6 - 8
6k = 162
k = 162/6
k = 27