Math, asked by singhabhi9290, 11 months ago

In an A.P., the sum of first n terms is (3n²/2)+(13n/2). Find its 25th term.

Answers

Answered by sanjeevk28012
0

Answer:

The 25th terms of an Arithmetic progression is 85

Step-by-step explanation:

Given as :

The sum of first n terms of an AP is \dfrac{3n^{2} }{2}  +  \dfrac{13n}{2}

For Arithmetic progression

Sum of n term = S_n = \dfrac{n}{2} [ 2 a + ( n - 1 ) d ]

∵  S_n  =  \dfrac{3n^{2} }{2}  +  \dfrac{13n}{2}

i.e S_n = \dfrac{3n^{2}+13n }{2}

Or, S_n = \dfrac{n}{2} (3 n + 13)

And

S_n_-_1  =  \dfrac{3(n-1)^{2} }{2}  +  \dfrac{13(n-1)}{2}

Or,  S_n_-_1 = \dfrac{3(n^{2}+1-2n)+13(n-1) }{2}

Or, S_n_-_1 = \dfrac{3n^{2}+3-6n+13n-13 }{2}

Or, S_n_-_1 = \dfrac{3n^{2}+7n-10 }{2}

Again

∵  a_n  = S_n  -  S_n_-_1

i.e  a_n = ( \dfrac{3n^{2}+13n }{2}  ) -  ( \dfrac{3n^{2}+7n-10 }{2}  )

Or, a_n =  \dfrac{3n^{2}-3n^{2} +13n - 7n+10 }{2}

∴  a_n = \dfrac{6n+10}{2}

i.e a_n = 3 n + 5

So, nth terms of an A.P = a_n = 3 n + 5

Now, for n = 25

a_2_5  = 3 × 25 + 10

a_2_5  = 75 + 10

a_2_5 = 85

25th terms of A.P = 85

So, The 25th terms of an Arithmetic progression =  a_2_5 = 85

Hence, The 25th terms of an Arithmetic progression is 85 . Answer

Similar questions