Math, asked by shobharajesh866, 2 months ago

In an A. P the sum of four terms is 20 and the sum of their squares is 120.Find the four terms​

Answers

Answered by Yugant1913
10

Step-by-step explanation:

 \sf \: Let  \: the \:  four \:  number \:  in \:  A.P  \: be  \\  \tt \: a - 3d  ,  \: a - d ,  \: a + b ,  \: a + 3d \:  \:  \:  \:  \:  -  -  - (1)

 \sf \: Given  \: that \:  sum  \: of  \: the \:  terms = 20

 \tt \implies \: (a - 3d) + (a - d)(a + d) + (a + 3d) = 20

 \bf \:  \: 4a \:  = 20 \\   \bf  a = 5 \:  \:  \:  \:  \:  -  -  - (2)

 \sf \: Given \:  that \:  sum \:  of  \: square  \: of  \: the \:  terms = 120

 \tt \implies \: (a -  {3d)}^{2}  + (a - d {)}^{2}  +  {(a + d) }^{2}  + (a + 3d {)}^{2}  = 120

 \tt \implies \: ( {a}^{2}  +  {9d}^{2}  - 6ad) + ( {a}^{2}  +  {d}^{2}   - 2ab) + ( {a}^{2}  +  {d}^{2}  + 2ad) + ( {a}^{2}  +  {9d}^{2}  + 9ad) = 120

 \tt \implies \:  {4a}^{2}  +  {20d}^{2}  = 120

 \bf \: Substitute \:   \:  \green{a = 5} \:  from  \:  \:  \:  \:  \:  \:  \:  \:  \: - - (2)

 \tt \implies \: 4 {(5)}^{2}  +  {20d}^{2}  = 120

 \tt \implies100 +  {20d}^{2}  = 120

 \tt \implies {20d}^{2}  = 120 - 100

 \tt \implies {20d}^{2}  = 20

 \blue{  \boxed{\bf \implies \: d \:  =  + 1 \:  \:  \: or \:  \:  \:  \:  - 1}}

  \bf\red{Since  \: A.P  \: cannot  \: be \:  negative }

 \bf \green{Substitute \: } \: a = 5 \green{  \: \: and} \:  \: d = 1 \green{ \:  \: in \: (1), \: we \: get}

 \sf \red{a - 3d}, \:  \green{a - d}, \:  \pink{a + b}, \:  \blue{a + 3d} = 2,4,6,8

Similar questions