Math, asked by sammy2003, 1 year ago

In an A.P., the sum of the 4th and 8th term is 24 and sum of the 6th and 1Oth term is 44. Find the first 3

terms of an A.P.​

Answers

Answered by Anonymous
61

here is your answer

hope it helps you

plzz Mark as brainliest answer

Attachments:

sammy2003: how to do it
sammy2003: i dont know
sammy2003: how to do
abrazshaikh: what a funny joke guys
Answered by nain31
105
 \underline \bold{Given \: the \: sum \: of \: 4th \: and \: 8 \: the \: term \: is \: 24}

So ,

 \mathsf{t_8 = a + (8 -1)d}

 \mathsf{t_8 = a + 7d}

 \mathsf{t_4= a + (4 -1)d}

 \mathsf{t_4= a + 3d}

 \underline \bold{Their \: sum \: is \: 24}

 \mathsf{a + 7d + a + 3d= 24}

 \mathsf{2a + 10d = 24-----(1)}

 \underline \bold{Given \: the \: sum \: of \: 6th \: and \: 10\: term \: is \: 44}

 \mathsf{t_6= a + (6 -1)d}

 \mathsf{t_6 = a + 5d}

 \mathsf{t_10= a + (10 -1)d}

 \mathsf{t_10= a + 9d}

 \underline \bold{Their \: sum \: is \: 44}

 \mathsf{a + 5d + a + 9d =44}

 \mathsf{2a + 14d =44---(2)}

On substracting eq (2) by (1)

 \mathsf{2a + 14d =44}

 \mathsf{-2a + 10d = 24}

______________

 \mathsf{4d = 20}

______________

 \mathsf{\frac{20}{4} = d}

 \mathsf{d=5}

So on placing value of d in any of the equation let be in eq(1).

 \mathsf{2a + 5 ×10=24}

 \mathsf{2a + 50 =24}

 \mathsf{2a = 24 - 50}

 \mathsf{2a = 26}

 \mathsf{\frac{26}{2} = a}

 \mathsf{a=-13}

 \mathsf{So \: a=-13 and \: d= 5}

 \boxed {\mathsf{First \: term = -13}}

 \boxed{\mathsf{second \: term = -13 +5 =-8}}

 \boxed{ \mathsf{Third \: term = -8 + 5= -3}}

Haezel: brilliant
nain31: ~\(≧▽≦)/~ thank ya ma'am and all
abrazshaikh: arbaat
abrazshaikh: ...
athulyapc02: As always, AMAZING❤
Similar questions