- In an acute angled triangle ABC, if
Sin 2 (A+B-C) = 1 and tan (B+C-A) = √3
then find the values of A, B and C.
Answers
Answered by
0
No answer
This question is wrong
Sorry
Answered by
0
ANSWER
⇒ ∠A+∠B+∠C=180°
⇒ ∠A+∠B=180°-∠C -1
⇒ ∠B+∠C=180°-∠A -2
⇒ SIN 2(A+B-C)=1
⇒ BUT, SIN 90°=1
∴ 2(A+B-C)=90° -3
⇒ 2(180°-C-C)=90° FROM 1
⇒ 180°-2C=45°
⇒ -2C=45°-180°
⇒ -2C=-135
⇒ C=135°/2
⇒ C=67.5°
ALSO,
⇒ TAN (B+C-A)=√3
BUT, TAN 60°=√3
∴B+C-A=60° -4
⇒ 180-A-A=60° FROM 2
⇒ -2A=60°-180°
⇒ -2A=-120
⇒ A=60°
PUT A=60° AND C=67.5° IN EQ. NO.4
⇒ B+C-A=60°
⇒ B+67.5°-60°=60°
⇒ B+7.5°=60°
⇒ B=60°-7.5°
⇒ B=52.5°
∴A=60°
B=52.5°
C=67.5°
Similar questions
Math,
6 months ago
Math,
1 year ago
Political Science,
1 year ago
Biology,
1 year ago
Chemistry,
1 year ago