Math, asked by vishalsinghrajput14, 6 months ago

In an acute angled triangle ABC, if tan (A+B-C) = 1 and, sec (B+C-A) = 2, find the value of A, B and C.​

Answers

Answered by brainlyofficial11
130

Aɴsʀ

We have,

  • tan(A + B - C) = 1
  • and, sec(B + C - A) = 2

 \bold{ \implies \tan (A + B - C) =  \tan45 \degree } \\  \bold{and  } \\  \bold{ \:  \:  \:  \:  \:  \:  \:   \sec(B + C - A) =  \sec 60 \degree}

 \bold{ \implies (A + B - C) = 45 \degree} \\  \bold{and} \\     \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{(B + C - A) = 60 \degree}

 \bold{ \implies(A + B - C) + (B + C - A)  =45 \degree + 60 \degree } \\  \\   \bold{\implies \cancel{ A} +  B -  \cancel{C} +  B + \cancel{ C} - \cancel{ A} = 105 \degree} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{\implies2 B  = 105 \degree} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\    \bold{\implies} \boxed{ \red{\bold{ B =  \frac{105 }{2}  \degree= 52  \frac{1}{2}  \degree  }}} ..........(i)\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:

_________________________

now, putting B = 105/2° in (B + C - A) = 60°, we get

  \bold{\implies  \frac{105}{2} \degree +C - A = 60 \degree } \:   \:  \\  \\  \bold{ \implies C - A = 60 \degree -  \frac{105}{2} \degree }  \:  \: \\  \\   \bold{\implies C - A =  \frac{120 \degree - 105 }{2} \degree} \\  \\ \bold{ \implies}  \boxed{ \bold{ C - A =  \frac{15 }{2} \degree }  }..........(ii)

_________________________

Also , In ∆ABC , we have

A+B+C = 180°

(Angle sum property :- sum of all interior angles of triangle is 180°)

from eq.(i) ,we get

  • B = 105/2°

 \bold{ \implies A +  \frac{105}{2}  \degree+ C = 180 \degree}  \: \\  \\ \bold{\implies A + C  = 180 \degree -  \frac{105}{2} \degree } \:  \:   \\  \\   \bold{ \implies A + C =  \frac{360 \degree -  105 \degree}{2} }  \:  \:  \:  \\  \\  \bold{ \implies}  \boxed{\bold{C + A  =  \frac{255 }{2} \degree }}.......(iii)

_________________________

now, we have 2 equations

  • C - A = 15/2° ..........(ii)
  • C + A = 255/2° ..........(iii)

adding (ii) and (iii)

 \bold{ \implies C -  \cancel{A} + C + \cancel{A}  =  \frac{15}{2} \degree +  \frac{255}{2}  \degree } \\  \\  \bold{ \implies 2C =  \frac{15  \degree+ 255 \degree}{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{ \implies C  =   \cancel{\frac{270}{4}  \degree}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\    \bold{ \implies}\boxed{ \red{\bold{C =  \frac{135}{2}  \degree =67 \frac{1}{2}  \degree} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now, putting C = 135/2° in (iii)

 \bold { \implies  \frac{135}{2}   \degree+ A = \frac{255 }{2}  \degree  }  \\  \\ \bold{ \implies A =  \frac{255}{2} \degree   -  \frac{135}{2} \degree } \\  \\   \bold{\implies A =  \frac{255 \degree - 135 \degree}{2} } \\  \\  \bold { \implies  A =  \frac{120}{2}  \degree}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bold{\implies }\boxed{  \red{ \bold{ A = 60 \degree}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_________________________

hence,

 \bold{• \:  \:  \:   \: A  =  60 \degree} \:  \:  \\  \\  \bold{• \:  \:  \:  \:B =  52\frac{1}{2}   \degree } \\  \\  \bold{• \: \:  \:  \: C = 67 \frac{1}{2} \degree }

Similar questions