Math, asked by MannShah0312, 9 months ago

In an acute angled triangle ABC, the minimum value of tan^n A + tan^n B + tan^n C. is
(when ne N, n > 1)

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

We know,

In acute triangle ABC,

\rm :\longmapsto\:A + B + C = \pi

can be rewritten as

\rm :\longmapsto\:A + B = \pi - C

Apply tan on both sides, we get

\rm :\longmapsto\:tan(A + B) =tan( \pi - C)

We know,

\boxed{ \bf{ \: tan(x + y) =  \frac{tanx + tany}{1 - tanxtany}}}

So, using this we get

\rm :\longmapsto\:\dfrac{tanA + tanB}{1 - tanAtanB} =  - tanC

\rm :\longmapsto\:tanA + tanB =  - tanC + tanAtanBtanC

\rm :\implies\:tanA + tanB + tanC = tanAtanBtanC

Now, we kmow that

Arithmetic mean is always greater than or equals to geometric mean.

So, apply this property on tanA, tanB and tanC, we get

\rm :\longmapsto\:\dfrac{tanA + tanB + tanC}{3} \geqslant  \sqrt[3]{tanAtanBtanC}

\rm :\longmapsto\:tanA + tanB + tanC \geqslant 3 \sqrt[3]{tanAtanBtanC}

On cubing both sides, we get

\rm :\longmapsto\: {(tanA + tanB + tanC)}^{3} \geqslant 27tanAtanBtanC

As we proved above,

 \red{\rm :\longmapsto\:\:tanA + tanB + tanC = tanAtanBtanC}

So, using this, we get

\rm :\longmapsto\: {(tanAtanB tanC)}^{3} \geqslant 27tanAtanBtanC

\rm :\longmapsto\: {(tanAtanB tanC)}^{2} \geqslant 27

 \red{\rm :\implies\:tanAtanBtanC \geqslant 3 \sqrt{3} }

or

 \red{\rm :\implies\:tanA + tanB + tanC \geqslant 3 \sqrt{3} }

Now, we have to evaluate minimum value of

\rm :\longmapsto\: {tan}^{n}A +  {tan}^{n}B +  {tan}^{n}C

Now, we know from property of power of Arithmetic mean that

\boxed{ \bf{ \:  {x}^{n} +  {y}^{n} \geqslant  {(x + y)}^{n}}}

So, using this property, we get

\rm :\longmapsto\: {tan}^{n}A +  {tan}^{n}B +  {tan}^{n}C \geqslant  {(tanA + tanB + tanC)}^{n}

As we proved above,

 \red{\rm :\longmapsto\:\:tanA + tanB + tanC \geqslant 3 \sqrt{3} }

So, using this, we get

\rm :\longmapsto\: {tan}^{n}A +  {tan}^{n}B +  {tan}^{n}C \geqslant  {(3 \sqrt{3} )}^{n}

Hence,

Minimum value of

\rm :\longmapsto\: {tan}^{n}A +  {tan}^{n}B +  {tan}^{n}C  =   {(3 \sqrt{3} )}^{n}

Similar questions