Math, asked by prasenjitdas5168, 9 months ago

In an ap 21 terms the sum of first 3term is -33 and that of middle 3 is 75 what is the sum of the ap ?

Answers

Answered by BrainlyConqueror0901
21

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:A.P=2037}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Number \: of \: terms = 21 \\  \\  \tt:  \implies Sum \: of \: first \: 3 \: terms =  - 33 \\  \\  \tt:  \implies Sum \: of \: next \: three = 75 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Sum \:of \: A.P = ?

• According to given question :

 \bold{For \: sum \: of \: first \: three \: term} \\   \tt:  \implies  s_{3} =  \frac{3}{2}(2a + (3 - 1) \times d) \\  \\   \tt:  \implies  - 33 =  \frac{3}{2} (2a + 2d) \\  \\ \tt:  \implies  - 33 = 3(a + d) \\  \\ \tt:  \implies a + d =  - 11 -  -  -  -   - (1) \\  \\  \bold{For \: next \: three \: sum \: of \: terms} \\ \tt:  \implies 75 =  \frac{3}{2} (2(a + 3d) + (3 - 1)d) \\  \\ \tt:  \implies  \frac{150}{3}  = 2a + 6d + 2d \\  \\ \tt:  \implies 50 = 2a + 8d \\  \\ \tt:  \implies a + 4d = 25 -  -  -  -  - (2) \\  \\  \text{Subtracting \: (1) \: from \: (2)} \\ \tt:  \implies 4d - d = 25 - ( - 11)

\tt:  \implies 3d = 36 \\  \\ \tt:  \implies d =  \frac{36}{3}  \\  \\  \green{\tt:  \implies d = 12} \\  \\  \text{Putting \: value \: of \: d \: in \: (2)} \\ \tt:  \implies a + 4 \times 12 = 25 \\  \\ \tt:  \implies a + 48 = 25 \\  \\ \tt:  \implies a = 25 - 48 \\  \\  \green{\tt:  \implies a =  - 23} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  s_{n} =  \frac{n}{2} (2a + (n - 1)d) \\  \\ \tt:  \implies  s_{21} =  \frac{21}{2} (2 \times  - 23 + (21 - 1) \times 12) \\  \\ \tt:  \implies  s_{21} = \frac{21}{2} ( - 46 + 240) \\  \\ \tt:  \implies  s_{21} = \frac{21}{2}  \times 194 \\  \\  \green{\tt:  \implies  s_{21} =2037 }

Answered by Anonymous
62

Answer:

Given:

• In an ap 21 terms the sum of first 3term is -33 and that of middle 3 is 75.

Find:

• What is the sum of the ap ?

According to the question:

• 21 = Total number of terms.

• -33 = Sum of first three terms.

• 75 = Sum of next three terms.

• Let us assume 'a' as the sum of first three sums and 'a₂₁' as total number of sums.

First three sums:

⇒ a₃ = 3/2 [2 (a + 3d) + (3 - 1) d]

⇒ -33 = 3/2 (2a + 2d)

⇒ -33 = 3 (a + d)

⇒ (a + d = 11)

⇒ -11 – Equation (1)

For next three terms:

⇒ 75 = 3/2 [2 (a + 3d) + (3 - 1) d]

⇒ 150/3 = (2a + 6d + 2d)

⇒ 50 = (2a + 8d)

⇒ (a + 4d)

25 – Equation (2)

Subtracting equation (1) for equation (2):

⇒ 4d - d = 25 - (-11)

⇒ 3d = 36

⇒ d = 36/3 = 12

.•. d = 12

Adding values for 'd' in equation (2):

⇒ a + 4 × 12 = 25

⇒ a + 48 = 25

⇒ a = 25 - 48 = -23

.•. a = -23

Finding the sum of AP.

⇒ aₙ = n/2 [2a + (n - 1) d]

⇒ a₂₁ = 21/2 [2 × -23 + (21 - 1) × 12]

⇒ a₂₁ = 21/2 [-46 + 240]

⇒ a₂₁ = 21/2 × 194

⇒ a₂₁ = 2037

Therefore, 2037 is the sum of AP.

Similar questions