In an ap 3+9+15+21+_ _ _ _ find a, CD,an,a20 s25, s 20 - s19
Answers
The given series 3+9+25+21+....
let the given series be a1+ a2+ a3+ a4+...
therefore first term a = a1 =3
Common difference d = a2-a1=a3-a2
a2-a1 = 9-3 =6
a3-a2 = 15-9 = 6
therefore d = 6
- an=a + (n-1)d
- sn =(n/2)(2a+(n-1)d)
a20 = 3+(20-1)6
=3+114
=117
then for s 25, s20 - s19 u can substute in the forma of sn and get the answer...
Step-by-step explanation:
3+9+15+21+_ _ _ _
first term (a^1) = 3
common difference(d) = a2 - a1
= 9 - 3 = 6
an = a+(n-1)d
= 3+(n-1)6
=3+6n-6
= 6n - 3
a20 = a1 + 19 (d)
= 3 + 19 (6)
= 3 + 96
= 99
s25 = n/2 [2a+(n-1)d]
= 25/2 [ 2(3)+(25-1)6]
= 25/2 [6+(24)6]
= 25/2 [6+144]
=25/2[150]
=25(75)
=1874
s20 = 20/2 [ 2(3)+(20-1)6]
= 10 [ 6+(19)6]
= 10 [6+96]
=10(114)
= 1140
s19 = 19/2 [2(3)+(19-1)6]
= 19/2 [ 6+(18)6]
= 19/2 [6+108]
= 19/2[ 114]
=19[57]
=1083
s20 - s19= 1140 - 1083
= 57
I hope it may be help you..........
please make me brainiest