Math, asked by acharyan286, 4 months ago

In an AP: a = 2, d = 8, Sn = 90, find n and an​

Answers

Answered by love8090100
4

Answer:

Given, a=2, d=8, Sn=90

To find, n=? , an=?

n=5, an=34

Attachments:
Answered by harshitha926594
2

Step-by-step explanation:

Sn  =  \frac{n}{2} (2a + (n - 1)d) \\  90=  \frac{n}{2} (2 \times 2 + (n - 1)8) \\  90 \times 2 = n(4 + 8n - 8) \\ 180 = n(8n - 4) \\  180= 8 {n}^{2} - 4n  \\   8 {n}^{2}  - 4n - 180 = 0 \\  = 4(2 {n}^{2}  - n - 45) = 0 \\ 2 {n}^{2}  - n - 45 = 0 \\ 2 {n}^{2}  - 10n + 9n - 45 = 0 \\ 2n(n - 5) + 9(n - 5) = 0 \\ (n - 5)(2n + 9) =  0 \\ n - 5 = 0 \: or \: 2n + 9 = 0 \\ n = 5 \:  \: or \:  \: 2n =  - 9 \\ n = 5 \:  \: or \:  \: n =  \frac{ - 9}{2}

Tn = a+(n-1)d \\Tn=2+(5-1)8\\Tn=2+(4)8\\Tn=2+32\\Tn=34

Similar questions