Math, asked by khuddus, 10 months ago

In an AP a3=7and a7=15 then first term is

Answers

Answered by Anonymous
2

ATQ.

Solve simultaneously

We know

a3=a+2d

a7=a+6d

So...,

a+2d=7

a+6d=15

Sub.

4d=8

d=2

Now put d 'sValue for a in any of eq

a+2(2)=7

a=3 Ans...

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{First\:term=3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies a_{3}= 7 \\\\ \tt:\implies a_{7}=15 \\\\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies first\:term= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{3} = 7 \\  \\ \tt:  \implies a + 2d = 7 \\  \\ \tt:  \implies a = 7 - 2d  -  -  -  -  - (1)\\  \\  \bold{For \:  a_{7}} \\ \tt:  \implies  a_{7} = 15 \\  \\ \tt:  \implies a + 6d = 15 \\  \\  \text{Putting \: value \: of \: a} \\ \tt:  \implies 7 - 2d + 6d = 15 \\  \\ \tt:  \implies 7  + 4d = 15 \\  \\ \tt:  \implies 4d = 15 - 7 \\  \\ \tt:  \implies 4d = 8 \\  \\ \tt:  \implies d =  \frac{8}{4} \\  \\   \green{\tt:  \implies d = 2} \\  \\  \text{Putting \: value \: of \: d \: in \: (1)} \\\\ \tt:  \implies a = 7 - 2 \times 2 \\\\ \tt:  \implies a = 7 - 4 \\  \\  \green{\tt:  \implies a = 3} \\  \\   \green{\tt \therefore First \: term \: is \: 3}

Similar questions