Math, asked by chandruhemanth6, 6 months ago

in an ap consists of 5 terms sum of the first three terms is 21 and the sum of last three terms is 45 find the AP​

Answers

Answered by EliteZeal
99

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Total number of terms in the AP = 5

 \:\:

  • Sum of the first three terms is 21

 \:\:

  • Sum of last three terms is 45

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The AP

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d ) ----- (1)

 \:\:

  •  \sf S_n = Sum of n terms

  • n = Number of terms

  • a = First term

  • d = Common difference

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Sum of the first three terms is 21

 \:\:

 \underline{\bold{\texttt{For sum of first three terms :}}}

 \:\:

  •  \sf S_n = 21

  • n = 3

  • a = a

  • d = d

 \:\:

Putting these values in (1)

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf 21 = \dfrac { 3} { 2 } (2a + (3 - 1)d )

 \:\:

 \sf 21 = \dfrac { 3} { 2 } (2a + 2d)

 \:\:

 \sf 21 = 3(a + d)

 \:\:

 \sf a + d = \dfrac { 21 } { 3 }

 \:\:

➠ a + d = 7 ------ (2)

 \:\:

Given that tere are total 5 term in the AP

 \:\:

So, Sum of last three term can be found as :

 \:\:

 \sf S_5 - S_2

 \:\:

  •  \sf S_5 = Sum of first 5 terms

  •  \sf S_2 = Sum of first 2 terms

 \:\:

 \underline{\bold{\texttt{For sum of first 5 terms :}}}

 \:\:

  •  \sf S_n  = S_5

  • n = 5

  • a = a

  • d = d

 \:\:

 \underline{\bold{\texttt{Putting these valued in (1) }}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf S_5 = \dfrac { 5 } { 2 } (2a + (5 - 1)d )

 \:\:

 \sf S_5 = \dfrac { 5 } { 2 } (2a + 4d)

 \:\:

 \sf S_5 = 5(a + 2d) ------ (3)

 \:\:

 \underline{\bold{\texttt{For sum of first 2 terms :}}}

 \:\:

  •  \sf S_n  = S_2

  • n = 2

  • a = a

  • d = d

 \:\:

 \underline{\bold{\texttt{Putting these valued in (1) }}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf S_2 = \dfrac { 2 } { 2 } (2a + (2 - 1)d )

 \:\:

 \sf S_2 = (2a + d) -------- (4)

 \:\:

We know that,

 \:\:

 \sf S_5 - S_2 = S_3

 \:\:

  •  \sf S_5 = 5(a + 2d)

  •  \sf S_2 = (2a + d)

  •  \sf S_3 = 45

 \:\:

 \underline{\bold{\texttt{Subtracting (4) from (3) }}}

 \:\:

➜ 5(a + 2d) - (2a + d) = 45

 \:\:

➜ 5a + 10d - 2d - d = 45

 \:\:

➜ 3a + 9d = 45

 \:\:

Diving above equation by 3

 \:\:

➜ a + 3d = 15 ------- (5)

 \:\:

 \underline{\bold{\texttt{Subtracting (2) from (5) }}}

 \:\:

➜ a + 3d - a - d = 15 - 7

 \:\:

➜ 2d = 8

 \:\:

➨ d = 4

 \:\:

  • Hence common difference is 4

 \:\:

 \underline{\bold{\texttt{Putting d = 4 in (2) }}}

 \:\:

➜ a + d = 7

 \:\:

➜ a + 4 = 7

 \:\:

➜ a = 7 - 4

 \:\:

➨ a = 3

 \:\:

  • Hence first term is 3

 \:\:

 \underline{\bold{\texttt{The AP will be :}}}

 \:\:

  • a + 0d = 3 + 0(4) = 3

  • a + 1d = 3 + 1(4) = 7

  • a + 2d = 3 + 2(4) = 11

  • a + 3d = 3 + 3(4) = 15

  • a + 4d = 3 + 4(4) = 19

 \:\:

  • The AP will be 3 , 7 , 11 , 15 , 19
Answered by Ranveerx107
0

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Total number of terms in the AP = 5

 \:\:

  • Sum of the first three terms is 21

 \:\:

  • Sum of last three terms is 45

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The AP

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d ) ----- (1)

 \:\:

 \sf S_n = Sum of n terms

n = Number of terms

a = First term

d = Common difference

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Sum of the first three terms is 21

 \:\:

 \underline{\bold{\texttt{For sum of first three terms :}}}

 \:\:

 \sf S_n = 21

n = 3

a = a

d = d

 \:\:

Putting these values in (1)

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf 21 = \dfrac { 3} { 2 } (2a + (3 - 1)d )

 \:\:

 \sf 21 = \dfrac { 3} { 2 } (2a + 2d)

 \:\:

 \sf 21 = 3(a + d)

 \:\:

 \sf a + d = \dfrac { 21 } { 3 }

 \:\:

➠ a + d = 7 ------ (2)

 \:\:

  • Given that tere are total 5 term in the AP

 \:\:

So, Sum of last three term can be found as :

 \:\:

 \sf S_5 - S_2

 \:\:

 \sf S_5 = Sum of first 5 terms

 \sf S_2 = Sum of first 2 terms

 \:\:

 \underline{\bold{\texttt{For sum of first 5 terms :}}}

 \:\:

 \sf S_n  = S_5

n = 5

a = a

d = d

 \:\:

 \underline{\bold{\texttt{Putting these valued in (1) }}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf S_5 = \dfrac { 5 } { 2 } (2a + (5 - 1)d )

 \:\:

 \sf S_5 = \dfrac { 5 } { 2 } (2a + 4d)

 \:\:

 \sf S_5 = 5(a + 2d) ------ (3)

 \:\:

 \underline{\bold{\texttt{For sum of first 2 terms :}}}

 \:\:

 \sf S_n  = S_2

n = 2

a = a

d = d

 \:\:

 \underline{\bold{\texttt{Putting these valued in (1) }}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d )

 \:\:

 \sf S_2 = \dfrac { 2 } { 2 } (2a + (2 - 1)d )

 \:\:

 \sf S_2 = (2a + d) -------- (4)

 \:\:

We know that,

 \:\:

 \sf S_5 - S_2 = S_3

 \:\:

 \sf S_5 = 5(a + 2d)

 \sf S_2 = (2a + d)

 \sf S_3 = 45

 \:\:

 \underline{\bold{\texttt{Subtracting (4) from (3) }}}

 \:\:

➜ 5(a + 2d) - (2a + d) = 45

 \:\:

➜ 5a + 10d - 2d - d = 45

 \:\:

➜ 3a + 9d = 45

 \:\:

  • Diving above equation by 3

 \:\:

➜ a + 3d = 15 ------- (5)

 \:\:

 \underline{\bold{\texttt{Subtracting (2) from (5) }}}

 \:\:

➜ a + 3d - a - d = 15 - 7

 \:\:

➜ 2d = 8

 \:\:

➨ d = 4

 \:\:

  • Hence common difference is 4

 \:\:

 \underline{\bold{\texttt{Putting d = 4 in (2) }}}

 \:\:

➜ a + d = 7

 \:\:

➜ a + 4 = 7

 \:\:

➜ a = 7 - 4

 \:\:

➨ a = 3

 \:\:

Hence first term is 3

 \:\:

 \underline{\bold{\texttt{The AP will be :}}}

 \:\:

a + 0d = 3 + 0(4) = 3

a + 1d = 3 + 1(4) = 7

a + 2d = 3 + 2(4) = 11

a + 3d = 3 + 3(4) = 15

a + 4d = 3 + 4(4) = 19

 \:\:

  • The AP will be 3 , 7 , 11 , 15 , 19
Similar questions