Math, asked by yoshi, 1 year ago

in an AP : given a=2 , d=8 , Sn=90 ,find n and An .
this is a problem from the chapter arithematic progressions from the 10th NCERT textbook 

Answers

Answered by kvnmurty
170
An = a + d (n -1 )
Sn = n * [ a  +  a + d (n-1) ]  / 2  =  n * mean of 1st term and nth term
90 =  n * [ 4 + 8 n - 8 ] /2 =>  180 = 8 n² - 4 n    =>  2 n² - n - 45 = 0
n = 5    => An = 2 + 4 * 8 = 34

Answered by hotelcalifornia
94

Answer:

The "number of terms", n be 5 and its value a_5=34  

Solution:

Given an AP with  

a = 2 , d = 8 , S _ { n } = 90

For an AP ,

S _ { n } = \frac { n } { 2 } ( 2 a + ( n - 1 ) d )

\begin{array} { c } { 90 = \frac { n } { 2 } ( 4 + 8 ( n - 1 ) ) } \\\\ { 90 = \frac { n } { 2 } ( 4 + 8 n - 8 ) } \\\\ { 90 = \frac { n } { 2 } ( 8 n - 4 ) } \\\\ { 180 = n ( 8 n - 4 ) } \\\\ { 8 n ^ { 2 } - 4 n = 180 } \end{array}

\begin{aligned} 8 n ^ { 2 } - 4 n - 180 & = 0 \\\\ 2 \left( 4 n ^ { 2 } - 2 n - 90 \right) & = 0 \\\\ 4 n ^ { 2 } - 2 n - 90 & = 0 \\\\ 2 \left( 2 n ^ { 2 } - n - 45 \right) & = 0 \\\\ 2 n ^ { 2 } - n - 45 & = 0 \end{aligned}

By factorising, we get,

\begin{array} { c } { 2 n ^ { 2 } - 10 n + 9 n - 45 = 0 } \\\\ { 2 n ( n - 5 ) + 9 ( n - 5 ) = 0 } \\\\ { ( n - 5 ) ( 2 n + 9 ) = 0 } \end{array}

Either,

\begin{array} { c } { ( n - 5 ) = 0 } \\\\ { n = 5 } \end{array}

Or,

\begin{array} { c } { ( 2 n + 9 ) = 0 } \\\\ { 2 n = - 9 } \\\\ { n = - 4.5 } \end{array}

Here the "number of terms", n cannot be negative.

Thus the "number of terms" be n=5  

The value of the nth term be,

\begin{array} { c } { a _ { n } = a + ( n - 1 ) d } \\\\ { a _ { 5 } = 2 + ( 5 - 1 ) 8 } \\\\ { a _ { 5 } = 2 + 4 \times 8 } \\\\ { a _ { 5 } = 2 + 32 = 34 } \end{array}

Thus, the "number of terms", n be 5 and its value a_5=34

Similar questions