Math, asked by gaurav6469, 1 year ago

In an AP, if a = 4, n = 7 and = 4, then the value of ‘d’

a. 0

b. 1

c. 3

d. 2​

Answers

Answered by BrainlyConqueror0901
79

Answer:

\huge{\pink{\boxed{\green{\sf{d=0}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

Correction in question :

a7=4

 \:  \: { \orange{ \underline{given \ratio}}} \\  {\green{a = 4}} \\ {\green{n = 7}} \\ {\green{an = 4}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \blue{ \underline{to \: find \ratio}}} \\  {\red{common \: difference(c.d) = }}

We know the formula to find differnce if first term , number of term and last term given :

 \to \: an = a + (n - 1)d \\ \to 4 = 4 + (7 - 1)d \\  \to \: 4 - 4 =  6d \\  \to \: 6d = 0 \\  \to  {\boxed{d = 0}}

\huge{\pink{\boxed{\green{\sf{d=0}}}}}

_________________________________________

Some more information about A.P

 {\underline{note  - }} \\  \to \: value \: of \: n \: cannot \: be \: in \: decimal \: negative \: form \\   {\underline{ formula - }} \\  \to \: an = a + (n -1 )d  \\   \to \: sn =  \frac{n}{2} (2a + (n - 1)d) \\ where  \ratio\\   \to \: an = last \: term \\  \to \: a = first \: term \\  \to \: d \:  = common \: difference \\  \to \: n = number \: of \: terms \\  \to \: sn   = sum \: of \: nth \: term

_________________________________________

Answered by 1645
1

Answer:

(a) 0

Step-by-step explanation:

please mark me branlist please

Similar questions