Math, asked by bhideaniruddha551, 8 months ago

in an AP, if an=2n+3, find S2

Answers

Answered by amansharma264
4

 \large \green{ \underline{answer}} \\  \\ \large \implies \orange{ \boxed{s2 = 12}}

  \large \green{ \underline{question}} \\  \\ an \:  =  \: 2n + 3 \\  \\ \large \implies \underline \orange{to \:  \: find} \\  \\ \large \implies{sum \:  \: of \:  \: 2nd \:  \:  \: terms} \\  \\ \large \implies \green{ \underline{given}} \\  \\ \large \implies {an \:  =  \:  \: 2n + 3} \\  \\ \large \implies \green{ \underline{solution}} \\  \\ \large \implies{put \:  \: n \:  = 1 = 2 + 3 = 5} \\  \\ \large \implies{put \:  \: n \:  = 2 = 4 + 3 = 7} \\  \\ \large \implies{put \:  \: n = 3 =  6 + 3 = 9} \\  \\ \large \implies{put \:  \: n = 4 = 8 + 3 = 11} \\  \\ \large \implies \therefore{ \green{first \:  \: term  = \: a = 5}} \\  \\ \large \implies \therefore{ \green{common \:  \: difference \:  = d \:  =7 - 5 = 2 }} \\  \\ \large \implies \underline{formula \:  \: of \:  \: sn} \\  \\ \large \implies \green{ \boxed{sn \:  =  \frac{n}{2} (2a + (n - 1)d}} \\  \\ \large \implies{s2 \:  =  \frac{2}{2} (2(5) + (2 - 1)2} \\  \\ \large \implies{}s2 = 1(10 + 2) \\  \\ \large \implies \green{ \boxed{s  2 =12 }}

Answered by Anonymous
0

QUESTION:

in an AP, if an=2n+3, find S2

FORMULA USED :

There are two formula to find the sum;

1.

</u><u>\</u><u>h</u><u>u</u><u>g</u><u>e</u><u>\</u><u>p</u><u>u</u><u>r</u><u>p</u><u>l</u><u>e</u><u> </u><u>{</u><u>s(n) =  \frac{n}{2}</u><u>[</u><u>2a + (n - 1)d</u></p><p><u>]</u><u>}</u><u>

where;

a = first term

d = common difference

2.

\huge\red {s(n) =  \frac{n}{2} (a + l)}

where;

a = first term

l = last term( till where we have to find sum)

now come to main question;

Here;

an = 2n + 3

if we put n = 1 then we get the first term;

so,

a1 = 2 \times 1 + 3 \\ a1 = 2 + 3 \\

a1 = 5

\huge\blue {first \: term = 5}

If we put n = 2 then we get the second term;

so,

a2 = 2 \times 2 + 3 \\ a2 = 7

\huge\pink {second \: term = 7}

now,

\huge\green {common \: differnce = second \: term - first \: term}

\red {d = a2  - a1}

so,

d = 7 - 5

d = 2

Using the formula of sum,

s(2) =  \frac{2}{2} (5 + 7) \\ s2 = 1 \times 12 \\ s(2) = 12

\huge\pink {sum(12) = 12}

Similar questions