Math, asked by VijayaLaxmiMehra1, 1 year ago

In an AP, if Sn = 3n^2 + 5n and ak = 164, then find the value of k.

Answers

Answered by Anonymous
11

Solution:-

Given: Sn = 3n² + 5n

S₁ = 3(1)² + 5(1) 

= 3 + 5 

T₁ = 8

S₂ = 3(2)² + 5(2)

= 12 + 10

= 22

So, T₁ + T₂ = 22

8 + T₂ = 22

T₂ = 22 - 8

T₂ = 14

Now,

a = 8 and d = 14 - 8 = 6

As ak = 164

or a + (k-1)d = 164

8 + (k-1)6 = 164

6k - 6 = 164 - 8

6k = 164 + 6 - 8

6k = 162

k = 162/6

k = 27

Answer.



Answered by siddhartharao77
21

Given : Sn = 3n^2 + 5n.

Substitute n = 1:

⇒ S1 = 3(1)^2 + 5(1)

        = 3 + 5

        = 8.

Therefore, First term a1 = 8.


Substitute n = 2:

⇒ S2 = 3(2)^2 + 5(2)

         = 12 + 10

         = 22.

Therefore, Second term a2 = 22 - 8 = 14.

Now, We have to find the common difference.

Common difference d = a2 - a1

                                     = 14 - 8

                                     = 6.


Here, First term a = 8 and common difference d = 6.

Given that kth term of an AP is 164.

⇒ ak = a + (k - 1) * d

⇒ 164 = 8 + (k - 1) * 6

⇒ 164 = 8 + 6k - 6

⇒ 164 = 6k + 2

⇒ 162 = 6k

⇒ k = 162/6

⇒ k = 27.


Therefore, the value of k = 27.


Hope this helps!

Similar questions