in an ap of 50 terms sum of first 10 terms is 210 and sum of its last 15 term is 2565 find the AP
Answers
Answered by
4
Consider a and d as the first term and the common difference of an A.P. respectively.
n th term of an A.P., an = a + ( n – 1)d
Sum of n terms of an A.P., S n = n/ 2 [2a + (n – 1)d]
Given that the sum of the first 10 terms is 210.
⇒ 10 / 2 [2a + 9d ] = 210
⇒ 5[ 2a + 9 d ] = 210
⇒2a + 9d = 42 ----------- (1)
15 th term from the last = ( 50 – 15 + 1 ) th = 36 th term from the beginning
⇒ a36 = a + 35d
Sum of the last 15 terms = 15/2 [2a36 + ( 15 – 1)d ] = 2565
⇒15/2 [2(a+35d)(14d ]=2565
⇒15 [ a + 35d + 7d ] = 2565
⇒a + 42d = 171 ----------(2)
From (1) and (2), we have d = 4 and a = 3.
Therefore, the terms in A.P. is 3, 7, 11, 15....199.
Answered by
1
According to the question:-
Hence required AP is →
3,7,11,15,....,199
Similar questions