Math, asked by neebir5ulreetale, 1 year ago

In an AP of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565. Find the A.P.

Answers

Answered by abhi178
13
use formula
Sn=n/2 {2a+(n-1) d}
where a is first term of AP and d is common difference
S10=10/2 {2a+(10-1) d}
210=5 (2a+9d)
2a+9d=42 -------------(1)
now again according to question
last 15 terms sum =2565
S50-S35=2565
50/2 {2a+49d}-35/2 (2a+34d)=2565
25 (2a+49d)-35 (a+17d)=2565
50a+1225d-35a-595d=2565
15a+630d=2565
a+62d=171 -------------(2)
solve equation (1) and (2) and find a and d also find AP


abhi178: please mark as brainliest
Answered by Anonymous
5

   \underline{  \underline{\bf{Answer}}}  :  -  \\   \implies \: 3, \: 7 \:, 11 \: ,15, \: ..........,199 \\ \\   \underline{\underline{ \bf{Step - by  - step \: explanation \: }}} :  -  \\  \\

According to the question:-

 \bf{sum \: of \: first \: 10 \: terms \:( s_{10})   = 210} \\   210 =  \frac{10}{2} \bigg (2a + (101)d \bigg) \: \\   \\ 2a + 9d = 42 \: .........(1)\\   \\ \bf{sum \: of \: last \: 15 \: terms \: ( s_{15})= 2565} \\ \\  s_{50} -s_{35} = 2565  \\  \\ 2565 =  \frac{50}{2}  \bigg(2a + (50 - 1)d \bigg)  -  \frac{35}{2} \bigg(2a + (35 - 1)d \bigg) \\  \\ 2565 = 25(2a + 49d) - 35(a + 17d)  \\  \\  2565 = 50a + 1225d - 35a - 595d \\  \\ after \: solving \: this \:  \\  \\ a + 42d = 171 \:  ...........(2) \\  \\ from \: eq(1) \: and \: (2) \\  \\eq (1) \times 42 - \: eq (2) \times 9 \\  \\ we \: get \:  \\  \\ a = 3 \: d = 4 \\

Hence required AP is →

3,7,11,15,....,199

Similar questions