Math, asked by DORAEMONDA7817, 1 year ago

In an ap of 50 terms the sum of first n terms is 210 and sum of its last 15 term is 2565 find ap

Answers

Answered by tuka81
4

Let a be the first term and d be the common difference of the given AP.

Sum of the first n terms is given by

Sn = n/2 {2a + (n - 1)d}

Putting n = 10, we get

S₁₀ = 10/2 {2a + (10 - 1)d}

210 = 5 (2a + 9d) 

2a + 9d = 210/5

2a + 9d = 42 ...............(1)

Sum of the last 15 terms is 2565

⇒ Sum of the first 50 terms - sum of the first 35 terms = 2565

S₅₀ - S₃₅ = 2565

⇒ 50/2 {2a + (50 - 1)d} - 35/2 {2a + (35 - 1)d} = 2565

25 (2a + 49d) - 35/2 (2a + 34d) = 2565

⇒ 5 (2a + 49d) - 7/2 (2a + 34d) = 513

⇒ 10a + 245d - 7a + 119d = 513

⇒ 3a + 126d = 513 

⇒ a + 42d = 171 ........(2)

Multiply the equation (2) with 2, we get

2a + 84d = 342 .........(3)

Subtracting (1) from (3)

  2a + 84d = 342

  2a + 9d   =  42

-      -         -

_______________

        75d = 300

_______________

 d= 4

Now, substituting the value of d in equation (1)

2a + 9d = 42

2a + 9*4 = 42

2a = 42 - 36

2a = 6

a = 3

So, the required AP is 3, 7, 11, 15, 19, 23, 27, 31, 35, 39 ........

please mark me as brainliest


deepthikms: tq so much
Answered by Anonymous
0

   \underline{  \underline{\bf{Answer}}}  :  -  \\   \implies \: 3, \: 7 \:, 11 \: ,15, \: ..........,199 \\ \\   \underline{\underline{ \bf{Step - by  - step \: explanation \: }}} :  -  \\  \\

According to the question:-

 \bf{sum \: of \: first \: 10 \: terms \:( s_{10})   = 210} \\   210 =  \frac{10}{2} \bigg (2a + (101)d \bigg) \: \\   \\ 2a + 9d = 42 \: .........(1)\\   \\ \bf{sum \: of \: last \: 15 \: terms \: ( s_{15})= 2565} \\ \\  s_{50} -s_{35} = 2565  \\  \\ 2565 =  \frac{50}{2}  \bigg(2a + (50 - 1)d \bigg)  -  \frac{35}{2} \bigg(2a + (35 - 1)d \bigg) \\  \\ 2565 = 25(2a + 49d) - 35(a + 17d)  \\  \\  2565 = 50a + 1225d - 35a - 595d \\  \\ after \: solving \: this \:  \\  \\ a + 42d = 171 \:  ...........(2) \\  \\ from \: eq(1) \: and \: (2) \\  \\eq (1) \times 42 - \: eq (2) \times 9 \\  \\ we \: get \:  \\  \\ a = 3 \: d = 4 \\

Hence required AP is →

3,7,11,15,....,199

Similar questions