Math, asked by mokurojusrujana3137, 10 months ago

In an AP's if a=3. ,
d=3,an=60 find n and sn

Answers

Answered by BrainlyPopularman
17

Question :

▪︎ In an A.P. if a = 3 , d = 3 , { \bold{ a_{n} = 60 }} then find n and { \bold{ s_{n}  }}.

ANSWER :

 \\  \longrightarrow{ \bold{ n = 20 }} \\

  \\ \longrightarrow{ \bold{  s_{n} = 630 }} \\

EXPLANATION :

GIVEN :

First term of A.P.(a) = 3

• Common difference (d) = 3

• nth term ({ \bold{ a_{n} }}) = 60

TO FIND :

Total number of term (n) = ?

• Sum of n term ( { \bold{ s_{n}  }} ) = ?

SOLUTION :

nth term of A.P.

 \\  \implies{ \red {\boxed{ \bold{ a_{n}   = a + (n - 1)d}}}} \\

• Now put the values –

 \\  \implies{ \bold{ 60   = 3 + (n - 1)3}} \\

 \\  \implies{ \bold{ 60   =  \cancel3 + 3n - \cancel3}} \\

 \\  \implies{ \bold{ 60   =  3n }} \\

 \\  \implies{ \boxed{ \bold{ n = 20 }}} \\

Sum of n term –

 \\ \implies{ \red { \boxed{ \bold{  s_{n} = \dfrac{n}{2}[2a + (n - 1)d]  }}}} \\

• Now put the values –

 \\ \implies{ \bold{  s_{n} = \cancel \dfrac{20}{2}[2(3) + (20 - 1)3]  }} \\

 \\ \implies{ \bold{  s_{n} = 10[6 +19  \times 3]  }} \\

 \\ \implies{ \bold{  s_{n} = 10[6 +57]  }} \\

 \\ \implies{ \bold{  s_{n} = 10(63)  }} \\

 \\ \implies{ \boxed{ \bold{  s_{n} = 630 }}} \\

Answered by Equestriadash
20

Given: In an AP,

  • a [first term] = 3
  • d [common difference] = 3
  • a_n [last term] = 60

To find: n [the number of terms] and S_n [sum of the terms.]

Answer:

Let's first find n.

\sf The\ general\ form\ of\ a\ term\ is\ \bf a_n\ =\ a\ +\ (n\ -\ 1)d.\\

Substituting the values,

\sf 60\ =\ 3\ +\ (n\ -\ 1)3\\\\\\60\ =\ 3\ +\ 3n\ -\ 3\\\\\\60\ =\ 3n\\\\\\\dfrac{60}{3}\ =\ n\\\\\\20\ =\ n

Therefore, the number of terms is 20.

Now, let's find the sum of the AP.

\bf S_n\ =\ \dfrac{n}{2}\Bigg[2a\ +\ (n\ -\ 1)d\Bigg]

Substituting the values,

\sf S_n\ =\ \dfrac{20}{2}\Bigg[2\ \times\ 3\ +\ (20\ -\ 1)3\Bigg]\\\\\\S_n\ =\ 10\Bigg[6\ +\ 19\ \times 3\Bigg]\\\\\\S_n\ =\ 10\Bigg[6\ +\ 57\Bigg]\\\\\\S_n\ =\ 10\ \times\ 63\\\\\\S_n\ =\ 630

Therefore, the AP has 20 terms and its sum is 630.

Similar questions