Math, asked by ubshinde1977, 2 months ago

In an ap s10=136and s9=120then findt10​

Answers

Answered by Flaunt
192

\sf\huge\bold{\underline{\underline{{Solution}}}}

Given:

\sf S_{10}= 136

\sf S_{9} = 120

To Find

\sf\huge t_{10}??

We use sum formula because here sn is given

\sf \bold{Sn =  \dfrac{n}{2} \bigg[2a + \bigg(n - 1\bigg)d\bigg]}

\sf S_{10}= 136

\sf \longmapsto136 =  \dfrac{10}{2} (2a + (10 - 1)d

\sf \longmapsto136 = 5(2a + 9d)

\sf \longmapsto10 + 45d = 136 - (1)

\sf S_{9} = 120

 \sf  \longmapsto120 =  \dfrac{n}{2} (2a + (9 - 1)d

 \sf \longmapsto120 =  \dfrac{9}{2} (2a + 8d)

 \sf \longmapsto120 =  \dfrac{9}{2}  \times 2(a + 4d)

 \sf \longmapsto9a + 36d = 120 - (2)

Now solving equation (1) and (2) by elimination method:

Now we will multiply with coefficient of 'a' to both the Equation :

 \sf \longmapsto10a + 45d = 136 (\times 9)

 \sf \longmapsto9a + 36d = 120 (\times 10)

New Equation obtained:

 \sf \longmapsto90a + 405d = 1224 - (3)

 \sf \longmapsto90a + 360d = 1200 - (4)

Now substracting Equation 4 from 3

=>90a+405d=1224

=>90a+360d=1200

=>(-)\:\: (-)\:\:\:\:\:\:\: (-)

_______________

45d=24

d=24/45=8/15

 \sf  \bold{d =  \dfrac{8}{15} }

Now put d in Equation 1

 \sf \longmapsto10a + 45d = 136

 \sf \longmapsto10a + 45 \times  \dfrac{8}{15}  = 136

 \sf \longmapsto10a + 24 = 136

 \sf \longmapsto10a = 112

 \sf \longmapsto \: a =  \dfrac{112}{10}=\dfrac{56}{5}

 \sf  \bold{a =  \dfrac{56}{5} }

We have find a and d now we have to find \sf t_{10}

 \sf \longmapsto \: t10 = a + (n - 1)d

 \sf \longmapsto \dfrac{56}{5}  + (10 - 1) \times  \dfrac{8}{15}

 \sf \longmapsto \dfrac{56}{5}  + 9 \times  \dfrac{8}{15}

 \sf \longmapsto \dfrac{56}{5}  + 3 \times  \dfrac{8}{5}

 \sf \longmapsto \dfrac{56}{5} +  \dfrac{24}{5}   =  \dfrac{80}{5}  = 16

 \sf\bold{ \therefore \: t_{10} = 16}

Similar questions