In an AP,sum of first 8 terms is 136 and that of 15 terms is 465. Find the sum of 25 terms.
Answers
Answered by
18
Solution :
Using formula of the sum of an A.P;
- a is the first term
- d is the common difference
- n is the term of an A.P.
A/q
&
From equation (2),we get;
∴Putting the value of a in equation (1),we get;
∴Putting the value of d in equation (3),we get;
Now;
Thus;
The sum of 25 terms will be 1275 .
Answered by
3
*۰۪۫G۪۫۰۰۪۫i۪۫۰۰۪۫v۪۫۰۰۪۫e۪۫۰۰۪۫n۪۫۰:
- Sum of first 8 terms(S8)=136
- Sum of 15 terms (S15) =465
* ۰۪۫T۪۫۰۰۪۫o۪۫۰ ۰۪۫F۪۫۰۰۪۫i۪۫۰۰۪۫n۪۫۰۰۪۫d۪۫۰:
- Sum of 25 terms(S25) =?
* ۰۪۫S۪۫۰۰۪۫o۪۫۰۰۪۫l۪۫۰۰۪۫u۪۫۰۰۪۫t۪۫۰۰۪۫i۪۫۰۰۪۫o۪۫۰۰۪۫n۪۫۰
Formula for sum of an A. P :
_____________
Sn= n/2[2a+(n-1) d]
_____________
Now to find the sum of first 8 terms,
By Using formula,
S8=8/2[2a+(8-1) d]
→136=4[2a+7d]
→136/4=2a+7d
→34=2a+7d
→2a+7d=34...................... (1)
Now to find the Sum of 15 terms,
By using formula,
S15=15/2[2a+(15-1) d]
→465=15/2[2a+14d]
→465×2/15=2a+14d
→ 31×2=2a+14d
→ 62=2a+14d
→62=2(a+7d)
→62/2=a+7d
→31=a+7d
→a+7d=31........................(2)
Subtracting equation (2) From (1) we get,
a=3
Now Substituting the value of a in (2)
→3+7d=31
→7d=31-3
→7d=28
→d=28/7
→d=4
Now, Let's find the Sum of 25 terms.
By using formula,
S25=25/2[2×3+(25-1) 4
=25/2[6+24×4]
=25/2[6+96]
=25/2×102
=25×51
=1275
Therefore, The sum of 25 terms is 1275.
Similar questions