Math, asked by oomi18144, 8 months ago

In an AP, the first term is 22,nth term is- 11 and the sum to first n term 66. Find n and d, the common difference​

Answers

Answered by TheProphet
14

S O L U T I O N :

\underline{\bf{Given\::}}

  • First term, (a) = 22
  • nth term, (l) = -11
  • Sum of nth term, (Sn) = 66

\underline{\bf{Explanation\::}}

Using formula of sum of an A.P;

\boxed{\bf{S_n = \frac{n}{2} [a+l]}}

A/q

\mapsto\tt{S_n = \dfrac{n}{2} \times  [a+l]}

\mapsto\tt{66 = \dfrac{n}{2} \times  [22+(-11)]}

\mapsto\tt{66 = \dfrac{n}{2} \times  [22-11]}

\mapsto\tt{66 = \dfrac{n}{2} \times  11}

\mapsto\tt{66 \times 2 = 11n}

\mapsto\tt{132 = 11n}

\mapsto\tt{n = \cancel{132/11}}

\mapsto\bf{n = 12}

Now, using formula of the A.P;

\boxed{\bf{a_n = a+(n-1)d}}

\mapsto\tt{-11 = 22 + (12- 1)d}

\mapsto\tt{-11 = 22 + (11)d}

\mapsto\tt{-11-22 = 11d}

\mapsto\tt{-33= 11d}

\mapsto\tt{d= -\cancel{33/11}}

\mapsto\bf{d = -3}

Thus,

The A.P of  n & d will be 12 & -3 .

Similar questions