Math, asked by gowdaprarthan, 2 months ago

in an ap the sum of 25 terms is 400 then the 13 the terms is​

Answers

Answered by KnightLyfe
42

Question:

In an AP the sum of 25 terms is 400 then the 13 the terms is.

Given:

Sum of 25 terms, \mathsf{{S}_{25}=400}

To Find:

\mathsf{13}^{th} term of AP.

Formula to be used:

\mathsf{{S}^{n}=\large\frac{n}{2}[2a+(n-1)d]}

Solution:

\dashrightarrow\mathsf{{S}^{n}=\large\frac{n}{2}[2a+(n-1)d]}

\dashrightarrow\mathsf{400=\large\frac{25}{2}[2a+(25-1)d]}

\dashrightarrow\mathsf{400=\large\frac{25}{2}[2a+(24)d]}

\dashrightarrow\mathsf{400\times 2=25[2a+24d]}

\dashrightarrow\mathsf{800=25[2a+24d]}

\dashrightarrow\mathsf{\large\frac{800}{25}=2a+24d}

\dashrightarrow\mathsf{32=2a+24d}

\dashrightarrow\mathsf{32=2(a+12d)}

\dashrightarrow\mathsf{\large\frac{32}{2}=a+12d}

\dashrightarrow\mathsf{16=a+12d}

We know, \mathsf{a+12d={a}_{13}} . So,

\color{red}\dashrightarrow\mathsf{{a}_{13}=16}

\therefore\: \mathsf{13}_{th} term of the Arithmetic progression is 16.

\underline\color{skyblue}\mathsf{More\: to\: know:}

-The sum to n terms of an AP with first term 'a' and common difference 'd' is given by:

\mathsf{{S}^{n}=\large\frac{n}{2}[2a+(n-1)d]}

Also, \mathsf{{S}_{n}=\large\frac{n}{2}[a+l]} , where,

l= last term =a+(n-1)d

Similar questions