Math, asked by prawalgangwar001, 9 months ago

in an AP the sum of first 10 terms is - 150 and the sum of next 10 terms is - 550 find the AP​

Answers

Answered by Unni007
2

Let,

  • a be the first term of the given AP
  • d be the common difference of the given AP

\boxed{\displaystyle\sf{S_n=\frac{n}{2}[2a+(n-1)d]}}

Given,

  • S₁₀ = -150
  • n = 10

\implies\displaystyle\sf{-150=\frac{10}{2}[2a+(10-1)d]

\implies\displaystyle\sf{-150=5[2a+9d]

\implies\displaystyle\sf{2a+9d=-30\:\:---(1)

______________________________

\implies\displaystyle\sf{S_{20}=-150-550

\implies\displaystyle\sf{S_{20}=-700

\implies\displaystyle\sf{-700=\frac{20}{2}[2a+(20-1)d]

\implies\displaystyle\sf{-700=10[2a+19d]

\implies\displaystyle\sf{2a+19d=-70\:\:---(2)

______________________________

\displaystyle\sf{(1)-(2)

\implies\displaystyle\sf{(2a+9d)-(2a+19d)=(-30)-(-70)

\implies\displaystyle\sf{2a+9d-2a-19d=-30+70

\implies\displaystyle\sf{-10d=40

\implies\displaystyle\sf{10d=-40

\implies\displaystyle\sf{d=-4

______________________________

Substituting the value of d in (1),

\implies\displaystyle\sf{2a+(9\times-4)=-30

\implies\displaystyle\sf{2a-36=-30

\implies\displaystyle\sf{2a=6

\implies\displaystyle\sf{a=3

______________________________

So we get the values enough to form an A.P.

Hence,

\boxed{\bold{\displaystyle\sf{The\: \:AP\: \:is \:\:\:\:3 \:,\: -1\: ,\: -5\: ,\: - 9\: ,\: .\: .\: .\: .}}}

Similar questions