Math, asked by DaIncredible, 1 year ago

In an AP, the sum of first 10 terms is -150 and the sum of next 10 terms is -550. Find the AP.

Answers

Answered by Anonymous
23

Here \: is \: the \: answer \: of \: your \: question

According to question we have given;

* Sum of first 10 terms is - 150

Means; S10 = - 150

Now,

Sn = n/2 [2a + (n-1)d]

S10 = 10/2 [2a + (10 - 1)d]

- 150 = 5 [2a + 9d]

- 30 = 2a + 9d ........(1)

Also, we have given that;

* Sum of next 10 terms is - 550

Means,

Sn = - 550

a = a + 10d

Sn = n/2 [2a + (n - 1)d]

- 550 = 10/2 [2 (a + 10d) + (10 - 1)d]

- 550 = 5 [2a + 20d + 9d]

- 550 = 5 [2a + 29d]

- 110 = 2a + 29d ........(2)

Now,

Solve (1) and (2) by elimination;

2a + 29d = -110
2a + 9d = - 30 (change it's sign)
_____________
0a + 20d = - 80
_____________

d = - 80/20

d = - 4

Put value of d in (1)

- 30 = 2a + 9(-4)

- 30 = 2a - 36

2a = 6

a = 6/2

a = 3

A.P. = a, a + d, a + 2d

= 3, 3 + (-4), 3 + 2(-4)

= 3, 3 - 4, 3 - 8

= 3, -1, -5......
___________________________________

Anonymous: Amazing answer , dude !
DaIncredible: Thankaaaaaaaaaaaaaaaaaaaa :D
DaIncredible: Shaktimaan
Answered by Anonymous
22

\underline{\underline{\large{\mathfrak{Solution : }}}}



\textsf{Let,} \\ \\<br /><br />\mathsf{\implies First \: term \: = \: a } \\ \\<br /><br />\mathsf{\implies Common \: difference \: = \: d }  \\  \\ \mathsf{\implies No. \: of \: terms \: = \: 10} \\ \\<br /><br />\mathsf{\implies S_{10} \: = \: -150}




\underline{\textsf{According to question : }} \\ \\<br /><br />\mathsf{\implies S_{10} \: = \: -150} \\ \\<br /><br />\underline{\textsf{Using Formula : }} \\ \\<br /><br />\boxed{\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}\{2a \: + \: (n \: - \: 1)d \} }}



 \mathsf{ \implies  \dfrac{10}{2} \{2a \:  +  \: (10 \:  -  \: 1)d \} \:  =  \:  - 150} \\  \\  \mathsf{ \implies5(2a \:  +  \: 9d) \:  =  \:  - 150  } \\  \\  \mathsf{ \implies 2a \:  +  \: 9d \:  =  \:  \dfrac{ - 150}{5} } \\  \\  \mathsf{ \implies 2a \:  +  \: 9d \:  =  \:  - 30} \\  \\  \mathsf{ \therefore \quad 2a \:  =  \:  - 30 \:  -  \: 9d \qquad...(1)}



\textsf{Now, sum of next 10 terms is -550.} \\ \\<br /><br />\textsf{We can think of an A.P. whose first term}  \\   \textsf{ is 11th term of previous A.P.}



\textsf{Now,} \\ \\<br /><br />\mathsf{\implies First \: term \: = \: a \: + \: 10d } \\ \\<br /><br />\mathsf{\implies Common \: difference \: = \: d } \\ \\<br /><br />\mathsf{\implies No. \: of \: terms \: = \: 10} \\ \\<br /><br />\mathsf{\implies S_{10} \: = \: -550}



\underline{\textsf{According to question : }} \\ \\<br /><br />\mathsf{\implies S_{10} \: = \: -550} \\ \\<br /><br />\underline{\textsf{Using Formula : }} \\ \\<br /><br />\boxed{\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}\{2a \: + \: (n \: - \: 1)d \} }}



 \mathsf{ \implies  \dfrac{10}{2} \{2(a \:  +  \: 10d) \:  +  \: (10 \:  -  \: 1)d \} \:  =  \:  - 550} \\  \\  \mathsf{ \implies5(2a \:  +  \: 20d \:  +  \: 9d) \:  =  \:  - 550  } \\  \\  \mathsf{ \implies5(2a \:  +  \: 29d) \:  =  \:  - 550} \\  \\  \mathsf{ \implies 2a \:  +  \: 29d \:  =  \:  \dfrac{ - 550}{5} } \\  \\  \mathsf{ \implies 2a \:  +  \: 29d \:  =  \:  - 110 } \\  \\  \mathsf{ \therefore \quad 2a \:  =  \:  - 110 \:  -  \: 29d \qquad...(2)}




\textsf{From (1) and (2) , we get : } \\ \\<br /><br />\mathsf{\implies -30 \: - \: 9d \: = \: -110 \: - \: 29d} \\  \\  \mathsf{ \implies  - 9d \:  +  \: 29d \:  =  \:  - 110 \:  +  \: 30} \\  \\  \mathsf{ \implies20d \:  =  \:  - 80 } \\  \\  \mathsf{ \implies d \:  =  \:  \dfrac{ - 80}{20} } \\  \\  \mathsf{ \therefore \quad d \:  =  \:  - 4}



\textsf{Plug the value of \textbf{d} in (1) : } \\ \\<br /><br />\mathsf{\implies 2a \: = \: -30 \: - \: 9d } \\ \\<br /><br />\mathsf{\implies 2a \: = \: -30 \: - \: 9(-4)} \\ \\<br /><br />\mathsf{\implies 2a \: = \: -30 \: + \: 36} \\ \\<br /><br />\mathsf{\implies 2a \: = \: 6 } \\ \\<br /><br />\mathsf{\implies a = \: \dfrac{6}{2}} \\ \\<br /><br />\mathsf{\therefore \quad a = \: 3 }



<br />\textsf{The General Form of an A.P. is : } \\ \\<br /><br />\textsf{a , ( a + d ) , ( a + 2d ) , ( a + 3d ) ,........} \\ \\<br /><br />\mathsf{ 3 \: , \: ( 3 \: - \: 4 ) \: , \: ( 3 \: - \: 2 \: \times \: 4 ) \: , \: ( 3 \: - \: 3 \times \: 4 ) \: ,........}  \\  \\  \mathsf{3 \: , \: -1 \: , \: ( 3 \: - \: 8 ) \: , \: ( 3 \: - \: 12 ) \: ,........} \\ \\<br /><br />\mathsf{3 \: , \: -1 \: ,  \: -5 \: , \: -9 \: , .......}




\boxed{\textsf{The required A.P. is 3 , -1 , -5 , -9 , ......}}

Anonymous: Thanks Bro !!
Anonymous: Okay Sis
DaIncredible: Thankaaaaaaaaaaaaaaaaaaaa :D
Anonymous: My Pleasureeeeeeeeeeeeeeeeeeeeee :D
Similar questions