In an AP the sum of first 10 terms is -150 and the sum of next ten terms is -550.Find the AP?
class 1 question
Answers
Answered by
39
Answer:
3,-1,-5...
Step-by-step explanation:
Note: Sum of first n terms Sn = (n/2)[2a + (n - 1) * d]
(i)
Given, Sum of first 10 terms is -150.
⇒ S₁₀ = (10/2)[2a + (n - 1) * d]
⇒ -150 = 5[2a + (10 - 1) * d]
⇒ -30 = 2a + 9d
(ii)
Given, Sum of next 10 terms is --550.
∴ S₂₀ - S₁₀ = -550
⇒ S₂₀ = -550 - 150
⇒ S₂₀ = -700
Now,
⇒ S₂₀ = (20/2)[2a + (20 - 1) * d]
⇒ -700 = 10[2a + 19d]
⇒ -70 = 2a + 19d
On solving (i) & (ii), we get
⇒ 2a + 9d = -30
⇒ 2a + 19d = -70
--------------------
-10d = 40
d = -4.
Substitute d = -4 in (i), we get
⇒ 2a + 9d = -30
⇒ 2a + 9(-4) = -30
⇒ 2a - 36 = -30
⇒ 2a = -30 + 36
⇒ a = 3.
Therefore, the AP is 3,-1,-5...
Hope it helps!
Answered by
37
In an AP the sum of first 10 terms is -150 and the sum of next ten terms is -550.Find the AP?
Given :-
=> sum of first ten terms of an AP = -150
=> sum of next ten terms of an AP = -550
°•° Sum of first n terms can be written as
Sn = (n/2)[2a + (n - 1) * d]
Case 1 .
•••••••••••
→ S10 = (10/2)[2a + (n - 1) × d]
→ -150 = 5[2a + (10 - 1) × d]
→ 2a + 9d = -30.....( 1 )
Case 2
•••••••••••
S20 - S10 = -550
→ S20 = -550 - 150
→ S20 = -700
°•° S20 = (20/2)[2a + (20 - 1) × d]
→ -700 = 10[2a + 20d - d ]
→ -700 = 10[2a + 19d]
→ 2a + 19d = -70......(2)
from equation ( 1 ) & ( 2 )
2a + 9d = -30
2a + 19d = -70
____________
-10d = 40
put the value of d in equation 1 .
→ 2a + 9d = -30
→ 2a + 9(-4) = -30
→ 2a - 36 = -30
→ 2a = -30 + 36
→ 2a = 6
→ a = 6/3
Hence ,
=> a = 3
=> a + d = 3 + -4
→ -1
=> a + 2d = 3+ 2×-4
=> 3 + (-8)
→ -5
•°• AP is 3,-1,-5........
Similar questions