Math, asked by ewpoluy12, 4 months ago

In an AP the sum of first 9 term is 14 more then 5 time the 8th term 8th and 2rd term are in the ratio 11:2 find the sums of first 20 terms of the A.P​

Answers

Answered by ItsCuteGirl68
27

Answer:

Answer. Answer: The sum of the first 20 terms of the AP is 1180.

Step-by-step explanation:

hope it's helpful kindly mark as a brain list please

Answered by MysticalStar07
35

We have given the information about an AP.

We have to find the sum of first 20 terms of the AP.

Now,

\displaystyle{\sf\:t_8\::t_2\:=\:11\::2\:\:\quad\:\:\:-\:[\:Given\:]}

\displaystyle{\red\implies\sf\orange{\:\dfrac{t_8}{t_2}\:=\:\dfrac{11}{2}}}

\displaystyle{\blue\implies\sf\green{\:t_8\:=\:\dfrac{11}{2}\:\times\:t_2}}

\displaystyle{\pink\implies\sf\purple{\:t_8\:=\:\dfrac{11\:t_2}{2}}}

\displaystyle{\orange\implies\sf\red{\:t_8\:=\:\dfrac{11\:\times\:[\:a\:+\:(\:2\:-\:1\:)\:d\:]}{2}}}

\displaystyle{\green\implies\sf\blue{\:t_8\:=\:\dfrac{11\:\times\:(\:a\:+\:d\:)}{2}}}

\displaystyle{\purple\implies\sf\pink{\:t_8\:=\:\dfrac{11a\:+\:11d}{2}\:\quad\:\:\:-\:-\:-\:(\:1\:)}}

Now,

\displaystyle{{\blue\sf\:S_n\:=\:\dfrac{n}{2}\:[\:2a\:+\:(\:n\:-\:1\:)\:d\:]}\sf\:\quad\:-\:\:[\:Formula\:]}

Now, from the given condition,

\displaystyle{\sf\:S_9\:=\:5\:\times\:t_8\:+\:14}

\displaystyle{\blue\implies\sf\green{\:\dfrac{9}{2}\:[\:2a\:+\:(\:9\:-\:1\:)\:d\:]\:=\:5\:\times\:\left[\:\dfrac{11a\:+\:11d}{2}\:\right]\:+\:14\:\quad\:\:\:[\:From\:(\:1\:)\:]}}

\displaystyle{\red\implies\sf\orange{\:\dfrac{9}{2}\:(\:2a\:+\:8d\:)\:=\:\dfrac{55a\:+\:55d}{2}\:+\:14}}

\displaystyle{\pink\implies\sf\purple{\:\dfrac{18a\:+\:72d}{\cancel{2}}\:=\:\dfrac{55a\:+\:55d\:+\:28}{\cancel{2}}}}

\displaystyle{\green\implies\sf\blue{\:18a\:+\:72d\:=\:55a\:+\:55d\:+\:28}}

\displaystyle{\orange\implies\sf\red{\:18a\:+\:72d\:-\:55a\:-\:55d\:=\:28}}

\displaystyle{\purple\implies\sf\pink{\:18a\:-\:55a\:+\:72d\:-\:55d\:=\:28}}

\displaystyle{\blue\implies\sf\green{\:-\:37a\:+\:17d\:=\:28\:\quad\:\:\:-\:-\:-\:(\:2\:)}}

Now, we know that,

\displaystyle{\red{\sf\:t_n\:=\:a\:+\:(\:n\:-\:1\:)\:\times\:d}\sf\:\quad\:\:-\:[\:Formula\:]}

Now,

\displaystyle{\sf\:t_8\::t_2\:=\:11\::2\:\:\quad\:\:\:-\:-\:-\:[\:Given\:]}

\displaystyle{\red\implies\sf\orange{\:\dfrac{t_8}{t_2}\:=\:\dfrac{11}{2}}}

\displaystyle{\pink\implies\sf\purple{\:\dfrac{a\:+\:(\:8\:-\:1\:)\:d}{a\:+\:(\:2\:-\:1\:)\:d}\:=\:\dfrac{11}{2}}}

\displaystyle{\green\implies\sf\blue{\:\dfrac{a\:+\:7d}{a\:+\:d}\:=\:\dfrac{11}{2}}}

\displaystyle{\orange\implies\sf\red{\:2\:(\:a\:+\:7d\:)\:=\:11\:(\:a\:+\:d\:)}}

\displaystyle{\purple\implies\sf\pink{\:2a\:+\:14d\:=\:11a\:+\:11d}}

\displaystyle{\blue\implies\sf\green{\:14d\:-\:11d\:=\:11a\:-\:2a}}

\displaystyle{\red\implies\sf\orange{\:3d\:=\:9a}}

\displaystyle{\pink\implies\sf\purple{\:d\:=\:\dfrac{\cancel{9}\:a}{\cancel{3}}}}

\displaystyle{\green\implies\boxed{\sf\:d\:=\:3a}\sf\:\quad\:\:-\:(\:3\:)}

Now, by substituting d = 3a in equation ( 2 ), we get,

\displaystyle{\sf\:-\:37a\:+\:17d\:=\:28\:\quad\:\:\:-(\:2\:)}

\displaystyle{\green\implies\sf\blue{\:-\:37a\:+\:17\:\times\:3a\:=\:28}}

\displaystyle{\orange\implies\sf\red{\:-\:37a\:+\:51a\:=\:28}}

\displaystyle{\purple\implies\sf\pink{\:14a\:=\:28}}

\displaystyle{\blue\implies\sf\green{\:a\:=\:\cancel{\dfrac{28}{14}}}}

\displaystyle{\red\implies\boxed{\green{\sf\:a\:=\:2}}}

Now, we know that,

\displaystyle{\blue{\sf\:S_n\:=\:\dfrac{n}{2}\:[\:2a\:+\:(\:n\:-\:1\:)\:d\:]}\sf\:\quad\:\:-\:[\:Formula\:]}

\displaystyle{\red\implies\sf\orange\:S_{20}\:=\:\dfrac{20}{2}\:[\:2a\:+\:(\:20\:-\:1\:)\:d\:]}

\displaystyle{\pink\implies\sf\purple{\:S_{20}\:=\:10\:(\:2a\:+\:19d\:)}}

\displaystyle{\green\implies\sf\blue{\:S_{20}\:=\:10\:(\:2a\:+\:19\:\times\:3a\:)\:\quad\:-[\:From\:(\:3\:)\:]}}

\displaystyle{\orange\implies\sf\red{\:S_{20}\:=\:10\:\times\:(\:2a\:+\:57a\:)}}

\displaystyle{\blue\implies\sf\green{\:S_{20}\:=\:10\:\times\:59a}}

\displaystyle{\red\implies\sf\orange{\:S_{20}\:=\:590\:\times\:2}}

\displaystyle{\pink\implies\underline{\boxed{\purple{\sf\:S_{20}\:=\:1180}}}}

\orange\therefore\sf\red{The\: sum \:of\: the \: first\:20\:terms}

\sf \red{of \: the \:AP\: is\: 1180.}

Similar questions