Math, asked by shivakittur63, 1 month ago

in an ap the sum of first 9 trems is 14 more than 5 timed the 8th trem 8th abd 2nd trems are in the ratio 11:2 find the sum of first 20 trems​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

And

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

According to statement,

★ The sum of first 9 terms of an AP is 14 more than 5 times the 8th term.

\rm :\longmapsto\:\dfrac{9}{2}\bigg(2a + (9 - 1)d\bigg)  = 14 + 5 \bigg(a + (8 - 1)d \bigg)

\rm :\longmapsto\:\dfrac{9}{2}\bigg(2a + 8d\bigg)  = 14 + 5 \bigg(a + 7d \bigg)

\rm :\longmapsto\:9(a + 4d) = 14 + 5a + 35d

\rm :\longmapsto\:9a + 36d = 14 + 5a + 35d

\rm :\implies\:d = 14 - 4a -  -  - (1)

According to second condition,

★ Ratio of 8th term and 2nd term is 11 : 2

\rm :\longmapsto\:\dfrac{a + (8 - 1)d}{a + (2 - 1)d}  = \dfrac{11}{2}

\rm :\longmapsto\:\dfrac{a + 7d}{a + d}  = \dfrac{11}{2}

\rm :\longmapsto\:11a + 11d = 2a + 14d

\rm :\longmapsto\:11a  - 2a = 14d - 11d

\rm :\longmapsto\:9a = 3d

\rm :\longmapsto\:3a = d

\rm :\longmapsto\:3a = 14 - 4a \:  \:   \:  \: \:  \:  \{ \: using \: (1) \:  \}

\rm :\longmapsto\:3a + 4a = 14

\rm :\longmapsto\:7a = 14

\bf\implies \:a = 2

On substituting the value of a, in equation (1), we get

\rm :\implies\:d = 14 - 4(2)

\rm :\implies\:d = 14 - 8

\bf\implies \:d = 6

So,

We have now,

  • First term of an AP, a = 2

  • Common difference of an AP, d = 6

  • Number of terms,n = 20

We know,

{{{{{{\rm :\longmapsto\:S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}}

{{{{{{\rm :\longmapsto\:S_{20}\:=\dfrac{20}{2} \bigg(2 \:(2)\:+\:(20\:-\:1)\:6 \bigg)}}}}}}

{{{{{{\rm :\longmapsto\:S_{20}\:=10 \bigg(4\:+\:(19)\:6 \bigg)}}}}}}

{{{{{{\rm :\longmapsto\:S_{20}\:=10 \bigg(4\:+ \: 76\bigg)}}}}}}

\rm :\longmapsto\:S_{20} = 800

Similar questions