Math, asked by Anonymous, 9 months ago

In an AP the sum of first n terms is 3n²/2+5n/2 find its 25 th term

____________​

Answers

Answered by SarcasticL0ve
9

☯ It is given that, Sum of first n terms of an AP is \sf \dfrac{3n^2}{2} + \dfrac{5n}{2}

☯ We have to find, \sf 25^{th} term of AP.

━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{We\;know\;that\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{n^{th}\;term = S_n - S_{(n - 1)}}}}}

⠀⠀⠀⠀⠀⠀⠀

Therefore,

:\implies\sf a_{25} = S_{25} - S_{(25 - 1)}\;\;\;\;\;\;\;\;\bigg\lgroup\bf eq.\;(1) \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{We\;have\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf S_n = \dfrac{3n^2}{2} + \dfrac{5n}{2}

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;n = 25\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;:\implies\sf S_{25} = \dfrac{3(25)^2}{2} + \dfrac{5(25)}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf S_{25} = \dfrac{3 \times 625}{2} + \dfrac{5 \times 25}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\::\implies\sf S_{25} = \dfrac{1875}{2} + \dfrac{125}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;:\implies\sf S_{25} = \dfrac{1875 + 125}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;\;\;:\implies\sf S_{25} = \dfrac{2000}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;\;\;:\implies\sf S_{25} = \cancel{ \dfrac{2000}{2}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;:\implies{\underline{\boxed{\sf{\pink{S_{25} = 1000}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━━

{\underline{\sf{\bigstar\;Again\;putting\;n = 24}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;:\implies\sf S_{24} = \dfrac{3(24)^2}{2} + \dfrac{5(24)}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf S_{24} = \dfrac{3 \times 576}{2} + \dfrac{5 \times 24}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;:\implies\sf S_{24} = \dfrac{1728}{2} + \dfrac{120}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;:\implies\sf S_{24} = \dfrac{1728 + 120}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;\;\;\;:\implies\sf S_{24} = \dfrac{1848}{2}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;\;\;:\implies\sf S_{24} = \cancel{ \dfrac{1848}{2}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;\;:\implies{\underline{\boxed{\sf{\pink{S_{24} = 924}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{Now,\;We\;have\;:}}}

⠀⠀⠀⠀⠀⠀⠀

  • \sf S_{25} = 1000

  • \sf S_{24} = 924

⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\; values\;in\;eq(1)\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf a_{25} = S_{25} - S_{(25 - 1)}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf a_{25} = 1000 - 924

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;:\implies{\underline{\boxed{\sf{\purple{a_{25} = 76}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore\;\sf a_{25} term of AP is 76.

━━━━━━━━━━━━━━━━━━━━━

\boxed{\bf{\mid{\overline{\underline{\bigstar\: Formulae\:related\:to\:AP :}}}}\mid}

⠀⠀⠀⠀⠀⠀⠀

  • \sf n^{th}\;term\;of\;AP = a_n = a + (n - 1)d

⠀⠀⠀⠀⠀⠀⠀

  • \sf Sum\;of\;n\;terms\;of\:AP = S_n = \frac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

  • \sf Sum\;of\;AP\;having\;last\;term\;as\;'l' = S_n = \frac{n}{2}(a + l)
Answered by Anonymous
11

Solution :

It is given that sum of n terms of A.P. is \sf \dfrac{3n^2}{2} + \dfrac{5n}{2}

Let the sum of n terms is given by \sf S_n

━━━━━━━━━━━━━━━

So,

:\implies \sf S_n =  \Bigg \lgroup\dfrac{3n^2}{2} + \dfrac{5n}{2} \Bigg \rgroup \\

Now, put n = 1 :

:\implies \sf S_1 =  \Bigg \lgroup\dfrac{3(1)^2}{2} + \dfrac{5(1)}{2} \Bigg \rgroup \\  \\

:\implies \sf S_1 =  \Bigg \lgroup\dfrac{3}{2} + \dfrac{5}{2} \Bigg \rgroup \\  \\

:\implies \sf S_1 = 4 \\

We know, \sf S_1 = a_1 as \sf S_1 is a sum of first term only.

Therefore, the first term is a = 4.

Now, Put n = 2 :

:\implies \sf S_2 =  \Bigg \lgroup\dfrac{3(2)^2}{2} + \dfrac{5(2)}{2} \Bigg \rgroup \\  \\

:\implies \sf S_2 =  \Bigg \lgroup\dfrac{3(4)}{2} + \dfrac{5(2)}{2} \Bigg \rgroup \\  \\

:\implies \sf S_2 =  \Bigg \lgroup\dfrac{12}{2} + \dfrac{10}{2} \Bigg \rgroup \\  \\

:\implies \sf S_2 =6 + 5 \\  \\

:\implies \sf S_2 = 11 \\  \\

_______________________

As we know that,

\bigstar\:\: \sf S_2 = a_1 + a_2\:\:\bigstar \\  \\

\dashrightarrow\:\: \sf 11 = 4 + a_2 \\  \\

\dashrightarrow\:\: \sf  a_2  = 11 - 4\\  \\

\dashrightarrow\:\: \sf  a_2  = 7\\  \\

As,

\sf  a_1  = 4 and \sf a_2 = 7

So, common difference (d) will be :

\bigstar \:  \: \sf  d = a_2 - a_1 \\  \\

:  \implies  \sf d =  7 - 4 \\  \\

:  \implies  \sf d =  3 \\  \\

Thus,

\bigstar\:\: \sf a_n = a + (n - 1) d\:\:\bigstar \\  \\

\leadsto \sf a_{25} =4 + (25 - 1)  \times 3\\  \\

\leadsto \sf a_{25} =4  + 24\times 3\\  \\

\leadsto \sf a_{25} =4 + 72\\  \\

\leadsto \sf a_{25} =76\\  \\

\therefore\:\underline{\textsf{The 25th term of the AP is \textbf{76}}}.

______________________

\boxed{\underline{\underline{\bigstar \: \bf\:Extra\:Brainly\:knowlegde\:\bigstar}}} \\  \\

Que : What is Arithmetic Progression ?

Ans : It is a mathematical sequence in which difference is between two consecutive terms is always constant is called as\sf \underline{\red {Arithmetic  \: Progression.}}

_______________________

\boxed{\underline{\underline{\bigstar\:\bf\:Some \:  important  \: Formulae \:  related \:  to \:  it  \:\bigstar}}} \\  \\ </p><p></p><p>

\sf (i) \: The\: nth\: term\: of \:an \:AP:\:\:\:\:  \red{a_n = a + (n - 1) d} \\  \\

\sf(ii) \: Sum \:  of \:  n  \: terms \:  in \:  AP :\:\:\:\:  \purple{S = \dfrac{n}{2}\Bigg\{ 2a + (n-1) d\Bigg\}} \\  \\

\sf (iii ) \: Sum \:  of  \: all \:  terms \:  in \:  a \:  finite  \: AP  \: with  \: the  \: last  \: term  \: as \:  'l': \:\:\:\:   \pink{\dfrac{n}{2} (a + l)} \\

━━━━━━━━━━━━━━━

Similar questions