In an AP. the sum of first ten terms is -150 and the sum of its next ten terms is -530
Find the AP
Answers
Given the sum of the first 10 terms of an AP is -150 and the sum of the next ten terms which means Sum of first 20 terms - Sum of first 10 terms is -530.
Let the first term, common difference of the AP be a and d respectively. Now,
⇒ S₁₀ = 10/2 [ 2a + (10 - 1)d ]
⇒ -150 = 5 [ 2a + 9d ]
⇒ 2a + 9d = -30 ...(i)
Now, according to the second case,
⇒ S₂₀ - S₁₀ = -530
⇒ S₂₀ - (-150) = -530
⇒ S₂₀ + 150 = -530
⇒ S₂₀ = -680
⇒ 20/2 [ 2a + (20 - 1)d ] = -680
⇒ 10 [ 2a + 19d ] = -680
⇒ 2a + 19d = -68 ...(ii)
Subtract (ii) from (i) , we get
⇒ 2a + 9d - (2a + 19d) = -30 - (-68)
⇒ 2a + 9d - 2a - 19d = -30 + 68
⇒ -10d = 38
⇒ d = -38/10
Now, substitute the value of d in (i), we get
⇒ 2a + 9×-38/10 = -30
⇒ 2a = -30 + 342/10
⇒ 2a = (-300 + 342) / 10
⇒ a = 42/10×2
⇒ a = 21/10
We know, the standard form of an AP is given by,
- a , a + d, a + 2d, a + 3d , ...
Substituting values ,we get
⇒ 21/10 , (-38+21)/10 , (21 - 76)/10 , (21 - 114)/10 , ...
⇒ 21/10 , -17/10 , -55/10 , -93/10 , ...
is the required AP.
Given :-
In an AP. the sum of first ten terms is -150 and the sum of its next ten terms is -530
To Find :-
AP
Solution :-
We know that
Now,
Putting S10 as -150
Second case
Again by using the same formula
Now,
From 1 we get
AP = 21/10 , -17/10 , -55/10 , -93/10 ,