Math, asked by bzr1961peqsih, 1 year ago

In an AP the sum of first ten terms is -150 and the sum of its next 10 terms is -550. Find the AP.

Answers

Answered by suyogya73
23
This is the method to find first term and common difference. Now AP can be found by a, a+d, a+2d,a+3d,.........
Thanks
Attachments:
Answered by Anonymous
49
Hey there !!


Let a be the first term and d be the common difference of the given AP .


S₁₀ = -150.

⇒ Sn = n/2 [ 2a + (n-1)d]

⇒ S₁₀ = 10/2 [ 2a + ( 10 - 1 ) d ].

⇒ -150= 10/2 [ 2a + 9d ]

⇒ -150 = 5 [ 2a + 9d ]

⇒ -30 = 2a + 9d

⇒2a + 9d = -30...........(1)

Clearly, the sum 20 term = - 150 + (-550) .

⇒ S₂₀ = -700

⇒ Sn = n/2 [ 2a + (n-1)d]

⇒ S₂₀ = 20/2 [ 2a + ( 20 - 1 )d ] .

⇒ -700   = 20/2 [ 2a + 19d ]

⇒ -700  = 10 [ 2a + 19d ]

⇒ -70 = 2a + 19d .

⇒ 2a + 19d = -70........(2)


Substracting 1 and 2 , we get 

  2a + 19d = -70
 2a + 9d = -30
-       -     +
____________

⇒ 10d = -40

⇒ d = -40/10 = -4

Put the value of d in equation 1.

2a + 9d = -30

⇒ 2a -36 = -30

⇒ 2a = -30+36

⇒ a = 6/2 = 3

a = 3

d = -4

Hence, AP is 3,-1,-5, - 9 ....


THANKS


#BeBrainly.
Similar questions