Math, asked by shivnarain707, 11 months ago

in an ap.the sum of its first ten term is -80 and the sum of its next ten term is -280.find the ap​

Answers

Answered by anukeerthika34
3

Answer:

  \frac{ - 13}{5} \: \:  \:  \:   \frac{ - 19}{5}  \:  \:  \:   - 5............

Step-by-step explanation:

s10 =  - 80 \\ s20 =  - 280 \\ by \: the \: formula \: sn =  \frac{n}{2} (2a + (n - 1)d) \\  \frac{10}{2} (2a + 9d) =  - 80 \\ 5(2a + 9d) =  - 80 \\ 10a + 45d =  - 80 \\  \div by \: 5 \\ 2a + 9d =  - 16 -  -  -  -  - eq1 \\   \frac{20}{2} (2a + 19d) =  - 280 \\ 10(2a + 19d) =  - 280 \\ 20a + 190d =  - 280 \\  \div by \: 10 \\ 2a + 19d =  - 28 -  -  -  -  -  - eq2 \\ 2a + 9d =  - 16 \\ 2a + 19d =  - 28 \\ 10d =  - 12 \\ d =  \frac{ - 6}{5}  \\ 2a + 9( \frac{ - 6}{5} ) =  - 16 \\ 2a  + \frac{ - 54}{5}  =  - 16 \\  \frac{10a - 54}{5}  =  - 16 \\ 10a - 54 =  - 80 \\ 10a =  - 26 \\ a =  \frac{ - 13}{5}  \\ the \: ap \: is \:  \frac{ - 13}{5}   \:  \:  \: \frac{ - 19}{5}  \:  \:  \:  \:  \:  - 5.......

Answered by aayyuuss123
2

Step-by-step explanation:

\huge\boxed  {\Orange {\mathbb{\underline  {\underbrace  {Answer}}}}}

<font color =purple >

let the first term and d is the common differences of AP

= Sn=n/2{2a+(n-1)d}

now.............

=S10=10/2{2a+(10-1)d}

= -80=5(2a+9d)

= 2a+9d=-16.........(1)

again....

S20-S10=-280

=20/2{2a+19d}+80=-280

= 10{2a+19d}=-360

= 2a+19d=-36.........(2)

solve this two equation

then..

we found

d=-2

a=1

so...

AP=1,-1,-3,-5......

Similar questions