Math, asked by Anonymous, 3 months ago

In an ap, the sum of n terms of ap is 3n^2 + 5n. Find the AP, hence find its 16th term.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:An \:  AP \:  series \:  having \: S_n =  {3n}^{2}  + 5n

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:An \:  AP \:  series \:  and \: a_{16} \: term

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

↝ nᵗʰ term of an arithmetic sequence is,

\rm :\longmapsto\:\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

And

↝ Sum of 'n' terms of an arithmetic sequence is,

\rm :\longmapsto\: S_{n} = \dfrac{n}{2} \bigg(2a + (n - 1)d \bigg)

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

  • Sₙ is the sum of first 'n' terms.

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:S_n =  {3n}^{2}  + 5n

\rm :\longmapsto\:  \dfrac{\cancel{n}}{2} \bigg(2a + (n - 1)d \bigg)  = \cancel{n}(3n + 5)

\rm :\longmapsto\:2a + (n - 1)d = 6n + 10

\rm :\longmapsto\:2a + nd - d = 6n + 10

\rm :\longmapsto\:(2a - d) + nd = 6n + 10

On comparing, we get

\rm :\longmapsto\:d = 6 \:  \: and \: 2a - d = 10

\rm :\longmapsto\:2a - 6 = 10

\rm :\longmapsto\:2a = 16

\rm :\implies\:a = 8

Hence,

\rm :\longmapsto\:An  \: AP \:  series \:  is \: 8, \: 14, \: 20, \: 26, \:  -  -  -

Now,

\rm :\longmapsto\:a_{16} = a + (16 - 1)d

\rm :\longmapsto\:a_{16} =a + 15d

\rm :\longmapsto\:a_{16} =8 + 15 \times 6

\rm :\longmapsto\:a_{16} =8 + 90

\rm :\longmapsto\:a_{16} =98

Similar questions