in an AP the sum of three consecutive terms is 27 and their product is 504 find the terms
Answers
Answer:
Step-by-step explanation:
Three terms
a-d,a,a+d
Sum= 27
a-d+a+a+d= 27
3a= 27
a= 9
Now product
a(a^2-d^2)= 504
9(81-d^2)=504
81-d^2=56
D^2=25
D= 5
AP: 4,9,14
Answer:
4, 9, 14
Step-by-step explanation:
Let the three terms be x - d, x & x + d, where x is the second term and d is the common difference.
⇒ Sum of the terms = 27
⇒ x - d + x + x + d = 27
⇒ 3x = 27
⇒ x = 9
Thus the second term is 9.
⇒ Product of terms = 504
⇒ (x - d) x (x + d) = 504
⇒ x(x - d)(x + d) = 504
⇒ x(x² - d²) = 504
⇒ 9(9² - d²) = 504 [∵ x = 9]
⇒ 9(81 - d²) = 504
⇒ 81 - d² = 504 / 9
⇒ 81 - d² = 56
⇒ d² = 81 - 56
⇒ d² = 25
⇒ d = ±5
Thus the common difference is either 5 or -5.
Taking d = 5...,
⇒ x - d = 9 - 5 = 4
⇒ x + d = 9 + 5 = 14
Taking d = -5...,
⇒ x - d = 9 - (-5) = 9 + 5 = 14
⇒ x + d = 9 + (-5) = 9 - 5 = 4
Thus the terms are 4, 9 and 14.
And the possible APs are 4, 9, 14,... and 14, 9, 4,...