Math, asked by rajumuni65527, 5 months ago

in an ap thrise the second term is equelent to eighth term and the sum of the fourth term and the seventh term is 9 grater then the ninth term find the AP soluti in steps​

Answers

Answered by EliteZeal
61

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Thrice the second term is equal to eighth term

 \:\:

  • Sum of the fourth term and the seventh term is 9 greater then the ninth term

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The AP

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \sf a_n = a + (n - 1)d ------ (1)

 \:\:

  •  \sf a_n  = nth term

  • a = First term

  • n = Number of term

  • d = Common difference

 \:\:

 \underline{\bold{\texttt{Second term :}}}

 \:\:

  • n = 2

  •  \sf a_n = a_2

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf a_2 = a + (2 - 1)d

 \:\:

 \sf a_2 = a + d -------- (2)

 \:\:

 \underline{\bold{\texttt{Eight term :}}}

 \:\:

  • n = 8

  •  \sf a_n = a_8

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf a_8 = a + (8 - 1)d

 \:\:

 \sf a_8 = a + 7d -------- (3)

 \:\:

 \underline{\bold{\texttt{Fourth term :}}}

 \:\:

  • n = 4

  •  \sf a_n = a_4

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf a_4 = a + (4 - 1)d

 \:\:

 \sf a_4 = a + 3d -------- (4)

 \:\:

 \underline{\bold{\texttt{Seventh term :}}}

 \:\:

  • n = 7

  •  \sf a_n = a_7

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf a_7 = a + (7 - 1)d

 \:\:

 \sf a_7 = a + 6d -------- (5)

 \:\:

 \underline{\bold{\texttt{Ninth term :}}}

 \:\:

  • n = 9

  •  \sf a_n = a_9

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf a_9 = a + (9 - 1)d

 \:\:

 \sf a_9 = a + 8d -------- (6)

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Case I

 \:\:

Thrice the second term is equal to eighth term

 \:\:

 \pink{\bold{3 × Equation (2) = Equation (3)}}

 \:\:

➜ 3 × (a + d) = a + 7d

 \:\:

➜ 3a + 3d = a + 7d

 \:\:

➜ 3a - a = 7d - 3d

 \:\:

➜ 2a = 4d

 \:\:

➜ a = 2d -------- (7)

 \:\:

Case II

 \:\:

Sum of the fourth term and the seventh term is 9 greater then the ninth term

 \:\:

 \pink{\bold{Equation (4)+Equation (5)=Equation (6) + 9}}

 \:\:

➜ a + 3d + a + 6d = a + 8d + 9

 \:\:

➜ 2a + 9d = a + 8d + 9

 \:\:

➜ 2a - a + 9d - 8d = 9

 \:\:

➜ a + d = 9 --------- (8)

 \:\:

 \underline{\bold{\texttt{Putting a = 2d from (7) to (8) }}}

 \:\:

➜ a + d = 9

 \:\:

➜ 2d + d = 9

 \:\:

➜ 3d = 9

 \:\:

 \sf d = \dfrac { 9 } { 3 }

 \:\:

➨ d = 3

 \:\:

  • Hence common difference is 3

 \:\:

 \underline{\bold{\texttt{Putting d = 3 in (7) }}}

 \:\:

➠ a = 2d

 \:\:

➜ a = 2(3)

 \:\:

➨ a = 6

 \:\:

  • Hence the first term is 6

 \:\:

So the AP will be :

 \:\:

  • a + 0d = 6 + 0(3) = 6

  • a + 1d = 6 + 1(3) = 9

  • a + 2d = 6 + 2(3) = 12

  • a + 3d = 6 + 3(3) = 15

  • a + 4d = 6 + 4(3) = 18

  • a + 5d = 6 + 5(3) = 21

  • a + 6d = 6 + 6(3) = 24

  • a + 7d = 6 + 7(3) = 27

  • a + 8d = 6 + 8(3) = 30

  • a + 9d = 6 + 9(3) = 33

 \:\:

Hence the AP will be 6 , 9 , 12 , 15 , 18 , 21 , 24 , 27 , 30 , 33 ..........

Similar questions