in an AP whose fisrt term is 2 .the sum of the first five terms is one fourth the sum of the next five terms. show that a20 =-112 and find s20
Answers
Answer:
So Your A.P series is like a, a+d, a+2d,....
where a = 2
In A P
S_{n} = \frac{n(2a+(n-1)d)}{2}S
n
=
2
n(2a+(n−1)d)
S_{5} = \frac{5(4+4d)}{2} = 5(2+2d)S
5
=
2
5(4+4d)
=5(2+2d)
The sum of next 5 terms can be got using
S_{10} - S_{5} = 5(4+9d) - 5(2+2d) = 20 + 45d - 10 - 10d = 10+35dS
10
−S
5
=5(4+9d)−5(2+2d)=20+45d−10−10d=10+35d
so
\begin{lgathered}5(2+2d) = 10 + 10d = \frac{10+35d}{4} \\ 40+40d = 10 + 35d \\ 5d = -30 \\ d = -6\end{lgathered}
5(2+2d)=10+10d=
4
10+35d
40+40d=10+35d
5d=−30
d=−6
Now
\begin{lgathered}t_{n} = a + (n-1)d \\ t_{20} = 2 + (20-1)(-6) = -112 \\ S_{20} = 10(4+19(-6)) = 10( 4 - 114) = -1100\end{lgathered}
t
n
=a+(n−1)d
t
20
=2+(20−1)(−6)=−112
S
20
=10(4+19(−6))=10(4−114)=−1100
Method 2:
So we have a = 2
Sum of first 5 terms = (Sum of next 5 terms) / 4
\begin{lgathered}(a) + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) = \\ ((a+ 5d) + (a + 6d) + (a + 7d) + (a + 8d) + (a + 9d) ) \frac{1}{4} \\ 4(5)a + 4(1+2+3+4)d = 5a + (5+6+7+8+9)d \\ 20a + 40d = 5a + 35d\end{lgathered}
(a)+(a+d)+(a+2d)+(a+3d)+(a+4d)=
((a+5d)+(a+6d)+(a+7d)+(a+8d)+(a+9d))
4
1
4(5)a+4(1+2+3+4)d=5a+(5+6+7+8+9)d
20a+40d=5a+35d
we have a = 2
\begin{lgathered}40 + 40d = 10 + 35d \\ 5d = -30 \\ d = - 6\end{lgathered}
40+40d=10+35d
5d=−30
d=−6
Now you can calculate
\begin{lgathered}t_{20} = -112 \\ S_{20} = - 1100\end{lgathered}
t
20
=−112
S
20
=−1100
Answer:
a5 = 2+4d. --- (1)
s5 = 1/4 (s10 - s5). ----(2)
a20 = a + 19d
-112 = 2 + 19d
d = -114/19
-6
a5 = 2+76
= 78
s20 = 20/2(2-112)
= -1120