Math, asked by Mister360, 5 months ago

In an Arithmetic progression,

\sf t_{15}=30,t_{20}=50
Find,
\sf S_{17}


MisterIncredible: good question

Answers

Answered by MisterIncredible
225

Question : -

In an Arithmetic progression, \sf{t_{15} = 30 \; , t_{20} = 50 }

Find S₁₇ ?

Answer

Given :-

t₁₅ = 30; t₂₀ = 50

Required to find : -

  • S₁₇

Solution : -

Given that;

t₁₅ = 30; t₂₀ = 50

t₁₅ represents the 15th term of the AP

t₂₀ represents the 20th term of the AP

Now,

We know that;

t₁₅ can be represented as , a + 14d

t₂₀ can be represented as , a + 19d

Now, This implies

  • a + 14d = 30 »(1)
  • a + 19d = 50 »(2)

Subtract eq 1 from eq 2

a + 19d = 50

a + 14d = 30

(-)(-) (-)

-------------------

0 + 5d = 20

--------------------

5d = 20

d = (20)/(5)

d = 4

So,

  • Common difference (d) = 4

Substituting the value of d in eq-1

a + 14d = 30

a + 14(4) = 30

a + 56 = 30

a = 30 - 56

a = -26

So,

  • First term (a) = -26

Now,

Let's find the sum of first 17 terms !

We know that;

S_(nth) = (n)/(2) [2a+(n-1)d]

Now,

Here the no. of term (n) = 17

We have,

S₁₇ = (17)/(2) [2(-26)+(17-1)4]

S₁₇ = (17)/(2) [-52 + (16)4]

S₁₇ = (17)/(2) [-52 + 64]

S₁₇ = (17)/(2) [12]

S₁₇ = (17 x 12)/(2)

S₁₇ = 17 x 6

S₁₇ = 108

Therefore,

  • S₁₇ = 108

us205859: ya bhan
us205859: jo bhi
BrainlyYuVa: Nice bro
Anonymous: Nice answer sir
siri789: how much time it took to type really great
Anonymous: Fabulous ✌️
angelgirlnew: verified answer
MathWizzMan: Nice !
TheVampireGirL: ɴɪᴄᴇ !!
Answered by ItzIshan
147

QuestioN :-

 \sf \: in \: an \: arithmetic \: progression \\  \\  \sf \: t _{15} = 30 \:, \: \: t _{20} = 50 \\  \\  \sf \: find \\  \\  \implies \sf s_{17} = \:  ?

Given :-

  •  \sf \: t _{15} = 30 \: \: , \: \: t _{20} = 50 \:

AnsweR :-

In the given terms ,

  \sf \: t_{15} \: represent \: the \: 15th \: element \: of \: AP \:

\sf \: t_{20} \: represent \: the \: 20th \: element \: of \: AP \:

We know that :-

  • \sf \: t_{15}  \: can \: be\: represented \: as \:  = a + 14d
  • \sf \: t_{20}  \: can \: be\: represented \: as \:  = a + 19d

Now,

 \star \sf \: a + 14d = 30 -  -  -  - (i)  \\  \\   \star\sf \: a + 19d = 50 -  -  -  - (ii)

Subtracting the equation (i) from equation (ii)

\implies \sf \: (a + 19d)  - (a + 14d) = 50 - 30 \\  \\ \: \implies  \sf \: a + 19d - a - 14d = 20 \\  \\  \implies \: \sf \: 5d = 20 \\  \\ \implies \sf \: d =  \frac{20}{5}  \\  \\   \implies \boxed{\sf \: d = 4} \\  \\  \sf \star \: hence \: common \: difference \: (d) = 4

Now , putting the value of d into Equation (i)

 \implies \sf \: a + 14(4) = 30 \\  \\ \implies \sf \: a + 56 = 30 \\  \\  \implies \: \sf \:  a = 30 - 56 \\  \\ \implies \boxed{ \sf \: a =  - 26} \\  \\  \sf   \star \: hence \: \: first \: term(a) =  - 26

Now, Find out the sum of first 17 terms

We know that :-

  •   \sf \: s_{n} =  \frac{n}{2}  \{2a + (n - 1)d \}

But , n = 17

 \implies \sf \: s_{17} =  \frac{17}{2}  \{2 \times(  - 26) + (17 - 1)4 \} \\  \\ \implies \sf \: s_{17} =  \frac{17}{2}  \{  - 52 + 16 \times 4\ \\  \\ \implies \sf \: s_{17} =  \frac{17}{2}  \{  - 52 + 64\} \\  \\ \implies \sf \: s_{17} =  \frac{17}{ \cancel{2}}  \times  \cancel{12} \\  \\ \implies \sf \: s_{17} = 17 \times 6 \\  \\ \implies  \boxed{\sf \: s_{17} = 108} \:  \\  \\  \\


Darksied99: bruh
Anonymous: nice
ItzIshan: Thanks All of uhh :) ❤️
MathWizzMan: Good
ItzIshan: Thank you ❤️
pchandanarao: Good
ItzIshan: Thanks ❤️
TheVampireGirL: Mind Blowing Ans ❤️
ItzIshan: Thank You ❤️
Anonymous: Superb answer ✌
Similar questions