Math, asked by tapanacharya1592, 1 year ago

In an arithmetic progression, the sum of the 4th and 6th terms of an arithmetic progression is 42. The sum of the 3rd and 9th terms of the progression is 52. Find the first term, common difference and the sum of the first 10th terms of the progression .

Answers

Answered by vipin2004
1

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
0

ANSWER

Let the first term of AP be a and difference be d

Then third term will be =a+2d

 {15}^{th}  \: will \: be = a + 14d

 {6}^{th}  \: will \: be = a + 5d

1 {1}^{th}  \: will \: be = a + 10d

1 {3}^{th} will \: be = a + 12d

then \: the \: eq. \: will \: be

a + 2d + a + 14d = a + 5d + a + 10d + a + 12d

 =  > 2a + 16d = 3a + 27d

 =  > a + 11d = 0

we \: understand \: a + 11d \: will \: be \: the \: 1 {2}^{th}  \: term \: of \: arithmetic \: progression.

so, \: CORRECT \: answer \: is \:  {\boxed {\pink{12}}}

HOPE IT'S HELPS YOU ❣️

Similar questions