In an Arithmetic Progression Whose first term is 2,the sum of first five terms is one fourth the sum of the next five terms . Show ThatT20=-112 Find S20
Answers
Answered by
1
Answer:
- 1100
Step-by-step explanation:
Given, a = 2 ;
⇒ S₅ = (1/4) [T₆+ T₇ + T₈ + T₉ + T₁₀]
⇒ S₅ = (1/4) [S₁₀ - S₅] ⇒ 4S₅ = S₁₀ - S₅
⇒ 5S₅ = S₁₀
⇒ 5 * (5/2)(2a + 4d) = (10/2) (2a + 9d)
⇒ 25(2a + 4d) = 10(2a + 9d)
⇒ 50a + 100d = 20a + 90d
⇒ -30a = 10d
⇒ -3a = d ⇒ -3(2) = d [a = 2]
⇒ -6 = d
∴ T₂₀ = a + 19d
= 2 + 19(-6)
= - 112 proved
∴ S₂₀ = (20/2) [2 + (-112)]
= -1100
*read thoroughly ; used:
Sₙ = (n/2) [2a + (n - 1)d]
or (n/2) [a + l] , l is last term
Tₙ = a + (n - 1)d
Similar questions